ﻻ يوجد ملخص باللغة العربية
A novel magnetic confined fusion scheme for the fusion reactor is proposed in this paper. A simple numerical estimation shows that ignition of D-T plasma can be achieved in tokamak with only OH heating by major and minor radius adiabatic compression. The density and temperature of compressed plasma can reach 1-3*10^22/m^3 and 15-25keV, respectively. Alternating current with adiabatic compression pulse of ACACT with R0 = 1.8m can deliver 400MW fusion power.
A natural fueling mechanism that helps to maintain the main core deuterium and tritium (DT) density profiles in a tokamak fusion reactor is discussed. In H-mode plasmas dominated by ion- temperature gradient (ITG) driven turbulence, cold DT ions near
Since the signature of the ITER treaty in 2006, a new research programme targeting the emergence of a new generation of Neutral Beam (NB) system for the future fusion reactor (DEMO Tokamak) has been underway between several laboratories in Europe. Th
A feasibility study of fusion reactors based on accelerators is carried out. We consider a novel scheme where a beam from the accelerator hits the target plasma on the resonance of the fusion reaction and establish characteristic criteria for a worka
We revisit the assumption that reactors based on deuterium-deuterium (D-D) fusion processes have to be necessarily developed after the successful completion of experiments and demonstrations for deuterium-tritium (D-T) fusion reactors. Two possible m
In this paper a study on a fusion reactor core is presented in heavy ion inertial fusion (HIF), including the heavy ion beam (HIB) transport in a fusion reactor, a HIB interaction with a background gas, reactor cavity gas dynamics, the reactor gas ba