ﻻ يوجد ملخص باللغة العربية
Transition metal oxide thin films show versatile electrical, magnetic, and thermal properties which can be tailored by deliberately introducing macroscopic grain boundaries via polycrystalline solids. In this study, we focus on the modification of the magnetic and thermal transport properties by fabricating single- and polycrystalline epitaxial SrRuO3 thin films using pulsed laser epitaxy. Using epitaxial stabilization technique with atomically flat polycrystalline SrTiO3 substrate, epitaxial polycrystalline SrRuO3 thin film with crystalline quality of each grain comparable to that of single-crystalline counterpart is realized. In particular, alleviated compressive strain near the grain boundaries due to coalescence is evidenced structurally, which induced enhancement of ferromagnetic ordering of the polycrystalline epitaxial thin film. The structural variations associated with the grain boundaries further reduce the thermal conductivity without deteriorating the electronic transport, and lead to enhanced thermoelectric efficiency in the epitaxial polycrystalline thin films, compared with their single-crystalline counterpart.
We have grown thin films of the Heusler compound Co_2FeSi by RF magnetron sputtering. On (100)-oriented MgO substrates we find fully epitaxial (100)-oriented and L2_1 ordered growth. On Al_2O_3 (11-20) substrates, the film growth is (110)-oriented, a
The functional properties of devices based on perovskite oxides depend strongly on the growth modes that dramatically affect surface morphology and microstructure of the hetero-structured thin films. To achieve atomically flat surface morphology, whi
A suite measurements of the electrical, thermal, and vibrational properties are conducted on palladium sulfide (PdS) in order to investigate its thermoelectric performance. The tetragonal structure with the space group $P$42/$m$ for PdS is determined
Epitaxial NbO2 (110) films, 20 nm thick, were grown by pulsed laser deposition on Al2O3 (0001) substrates. The Ar/O2 total pressure during growth was varied to demonstrate the gradual transformation between NbO2 and Nb2O5 phases, which was verified u
The double perovskite Sr2CrReO6 is an interesting material for spintronics, showing ferrimagnetism up to 635 K with a predicted high spin polarization of about 86%. We fabricated Sr2CrReO6 epitaxial films by pulsed laser deposition on (001)-oriented