ﻻ يوجد ملخص باللغة العربية
A suite measurements of the electrical, thermal, and vibrational properties are conducted on palladium sulfide (PdS) in order to investigate its thermoelectric performance. The tetragonal structure with the space group $P$42/$m$ for PdS is determined from X-ray diffraction measurement. The unique temperature dependence of mobility suggests that acoustic phonons and ion impurity scattering are two dominant scattering mechanisms within the compound. The obtained power factor of $27$ $mu$Wcm$^{-1}$K$^{-2}$ at 800 K is the largest value in the remaining transition-metal sulfides studied so far. The maximum value of the dimensionless figure of merit is 0.33 at 800 K. The observed phonon softening with temperature indicates that the reduction of the lattice thermal conductivity is mainly controlled by the enhanced lattice anharmonicity. These results indicate that the binary bulk PdS has promising potential to have good thermoelectrical performance.
An extended study on PdS is carried out with the measurements of the resistivity, Hall coefficient, Raman scattering, and X-ray diffraction at high pressures up to 42.3 GPa. With increasing pressure, superconductivity is observed accompanying with a
Transition metal oxide thin films show versatile electrical, magnetic, and thermal properties which can be tailored by deliberately introducing macroscopic grain boundaries via polycrystalline solids. In this study, we focus on the modification of th
We present an investigation of the thermoelectric properties of cubic perovskite SrTiO3. The results are derived from a combination of calculated transport functions obtained from Boltzmann transport theory in the constant scattering time approximati
Bismuth oxyselenide (Bi$_2$O$_2$Se) attracts great interest as a potential n-type complement to p-type thermoelectric oxides in practical applications. Previous investigations were generally focused on polycrystals. Here, we performed a study on the
The Seebeck coefficients, electrical resistivities, total thermal conductivities, and magnetization are reported for temperatures between 5 and 350 K for n-type Bi0.88Sb0.12 nano-composite alloys made by Ho-doping at the 0, 1 and 3% atomic levels. Th