ﻻ يوجد ملخص باللغة العربية
We present an efficient coresets-based neural network compression algorithm that sparsifies the parameters of a trained fully-connected neural network in a manner that provably approximates the networks output. Our approach is based on an importance sampling scheme that judiciously defines a sampling distribution over the neural network parameters, and as a result, retains parameters of high importance while discarding redundant ones. We leverage a novel, empirical notion of sensitivity and extend traditional coreset constructions to the application of compressing parameters. Our theoretical analysis establishes guarantees on the size and accuracy of the resulting compressed network and gives rise to generalization bounds that may provide new insights into the generalization properties of neural networks. We demonstrate the practical effectiveness of our algorithm on a variety of neural network configurations and real-world data sets.
In this paper, we study data-dependent generalization error bounds exhibiting a mild dependency on the number of classes, making them suitable for multi-class learning with a large number of label classes. The bounds generally hold for empirical mult
In this paper, we derive generalization bounds for the two primary classes of graph neural networks (GNNs), namely graph convolutional networks (GCNs) and message passing GNNs (MPGNNs), via a PAC-Bayesian approach. Our result reveals that the maximum
Recurrent Neural Networks (RNNs) are among the most popular models in sequential data analysis. Yet, in the foundational PAC learning language, what concept class can it learn? Moreover, how can the same recurrent unit simultaneously learn functions
Heavy-tailed distributions have been studied in statistics, random matrix theory, physics, and econometrics as models of correlated systems, among other domains. Further, heavy-tail distributed eigenvalues of the covariance matrix of the weight matri
In this paper, we present a novel approach for fine-tuning a decoder-side neural network in the context of image compression, such that the weight-updates are better compressible. At encoder side, we fine-tune a pre-trained artifact removal network o