ترغب بنشر مسار تعليمي؟ اضغط هنا

ClassiNet -- Predicting Missing Features for Short-Text Classification

121   0   0.0 ( 0 )
 نشر من قبل Danushka Bollegala
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The fundamental problem in short-text classification is emph{feature sparseness} -- the lack of feature overlap between a trained model and a test instance to be classified. We propose emph{ClassiNet} -- a network of classifiers trained for predicting missing features in a given instance, to overcome the feature sparseness problem. Using a set of unlabeled training instances, we first learn binary classifiers as feature predictors for predicting whether a particular feature occurs in a given instance. Next, each feature predictor is represented as a vertex $v_i$ in the ClassiNet where a one-to-one correspondence exists between feature predictors and vertices. The weight of the directed edge $e_{ij}$ connecting a vertex $v_i$ to a vertex $v_j$ represents the conditional probability that given $v_i$ exists in an instance, $v_j$ also exists in the same instance. We show that ClassiNets generalize word co-occurrence graphs by considering implicit co-occurrences between features. We extract numerous features from the trained ClassiNet to overcome feature sparseness. In particular, for a given instance $vec{x}$, we find similar features from ClassiNet that did not appear in $vec{x}$, and append those features in the representation of $vec{x}$. Moreover, we propose a method based on graph propagation to find features that are indirectly related to a given short-text. We evaluate ClassiNets on several benchmark datasets for short-text classification. Our experimental results show that by using ClassiNet, we can statistically significantly improve the accuracy in short-text classification tasks, without having to use any external resources such as thesauri for finding related features.



قيم البحث

اقرأ أيضاً

Automatic annotation of short-text data to a large number of target labels, referred to as Short Text Extreme Classification, has recently found numerous applications in prediction of related searches and product recommendation tasks. The conventiona l usage of Convolutional Neural Network (CNN) to capture n-grams in text-classification relies heavily on uniformity in word-ordering and the presence of long input sequences to convolve over. However, this is missing in short and unstructured text sequences encountered in search and recommendation. In order to tackle this, we propose an orthogonal approach by recasting the convolution operation to capture coupled semantics along the embedding dimensions, and develop a word-order agnostic embedding enhancement module to deal with the lack of structure in such queries. Benefitting from the computational efficiency of the convolution operation, Embedding Convolutions, when applied on the enriched word embeddings, result in a light-weight and yet powerful encoder (InceptionXML) that is robust to the inherent lack of structure in short-text extreme classification. Towards scaling our model to problems with millions of labels, we also propose InceptionXML+, which addresses the shortcomings of the dynamic hard-negative mining framework in the recently proposed LightXML by improving the alignment between the label-shortlister and extreme classifier. On popular benchmark datasets, we empirically demonstrate that the proposed method outperforms state-of-the-art deep extreme classifiers such as Astec by an average of 5% and 8% on the P@k and propensity-scored PSP@k metrics respectively.
Text classification is an important and classical problem in natural language processing. There have been a number of studies that applied convolutional neural networks (convolution on regular grid, e.g., sequence) to classification. However, only a limited number of studies have explored the more flexible graph convolutional neural networks (convolution on non-grid, e.g., arbitrary graph) for the task. In this work, we propose to use graph convolutional networks for text classification. We build a single text graph for a corpus based on word co-occurrence and document word relations, then learn a Text Graph Convolutional Network (Text GCN) for the corpus. Our Text GCN is initialized with one-hot representation for word and document, it then jointly learns the embeddings for both words and documents, as supervised by the known class labels for documents. Our experimental results on multiple benchmark datasets demonstrate that a vanilla Text GCN without any external word embeddings or knowledge outperforms state-of-the-art methods for text classification. On the other hand, Text GCN also learns predictive word and document embeddings. In addition, experimental results show that the improvement of Text GCN over state-of-the-art comparison methods become more prominent as we lower the percentage of training data, suggesting the robustness of Text GCN to less training data in text classification.
One of the key problems in multi-label text classification is how to take advantage of the correlation among labels. However, it is very challenging to directly model the correlations among labels in a complex and unknown label space. In this paper, we propose a Label Mask multi-label text classification model (LM-MTC), which is inspired by the idea of cloze questions of language model. LM-MTC is able to capture implicit relationships among labels through the powerful ability of pre-train language models. On the basis, we assign a different token to each potential label, and randomly mask the token with a certain probability to build a label based Masked Language Model (MLM). We train the MTC and MLM together, further improving the generalization ability of the model. A large number of experiments on multiple datasets demonstrate the effectiveness of our method.
We show how text from news articles can be used to predict intraday price movements of financial assets using support vector machines. Multiple kernel learning is used to combine equity returns with text as predictive features to increase classificat ion performance and we develop an analytic center cutting plane method to solve the kernel learning problem efficiently. We observe that while the direction of returns is not predictable using either text or returns, their size is, with text features producing significantly better performance than historical returns alone.
Data augmentation with mixup has shown to be effective on various computer vision tasks. Despite its great success, there has been a hurdle to apply mixup to NLP tasks since text consists of discrete tokens with variable length. In this work, we prop ose SSMix, a novel mixup method where the operation is performed on input text rather than on hidden vectors like previous approaches. SSMix synthesizes a sentence while preserving the locality of two original texts by span-based mixing and keeping more tokens related to the prediction relying on saliency information. With extensive experiments, we empirically validate that our method outperforms hidden-level mixup methods on a wide range of text classification benchmarks, including textual entailment, sentiment classification, and question-type classification. Our code is available at https://github.com/clovaai/ssmix.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا