ﻻ يوجد ملخص باللغة العربية
We report an optical/UV jet and counterjet in M84, previously unreported in archival HST imaging. With archival VLA, ALMA, and Chandra imaging, we examine the first well-sampled spectral energy distribution of the inner jet of M84, where we find that multiple co-spatial spectral components are required. In particular, the ALMA data reveal that the radio spectrum of all four knots in the jet turns over at approximately 100 GHz, which requires a second component for the bright optical/UV emission. Further, the optical/UV has a soft spectrum and is inconsistent with the relatively flat X-ray spectrum, which indicates a third component at higher energies. Using archival VLA imaging, we have measured the proper motion of the innermost knots at 0.9+/-0.6 and 1.1+/-0.4 c, which when combined with the low jet-to-counterjet flux ratio yields an orientation angle for the system of 74 (+9,-18) degrees. In the radio, we find high fractional polarization of the inner jet of up to 30% while in the optical no polarization is detected (< 8%). We investigate different scenarios for explaining the particular multi-component SED of the knots. Inverse Compton models are ruled out due to the extreme departure from equipartition and the unrealistically high total jet power required. The multi-component SED can be naturally explained within a leptohadronic scenario, but at the cost of very high power in relativistic protons. A two-component synchrotron model remains a viable explanation, but more theoretical work is needed to explain the origin and properties of the electron populations.
New images from the Hubble Space Telescope of the FRII radio galaxy Pictor A reveal a previously undiscovered tidal tail, as well as a number of jet knots coinciding with a known X-ray and radio jet. The tidal tail is approximately 5 wide (3 kpc proj
During the last decade, M87s jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability was also seen on timescales of months in the nuclear flux. Here we discuss the
Well-sampled optical lightcurves of 146 gamma-ray bursts (GRBs) are complied from the literature. Multiple optical emission components are extracted with power-law function fits to these lightcurves. We present a systematical analysis for statistical
By comparing the ratio of flux densities in the X-ray and UV wavebands by way of the spectral optical-X-Ray index, $alpha_{ox}$, we explore the relation between the emissions in the respective wavebands for a number of ULXs with known optical counter
We identify optical emission-line features 700 (12 kpc) southwest of the nucleus of Centaurus A, roughly opposite the radio jet and well-known optical emission filaments associated with the northern radio structure. These regions are spatially associ