ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical Detection of the Pictor A Jet and Tidal Tail: Evidence against an IC/CMB jet

157   0   0.0 ( 0 )
 نشر من قبل Eric S. Gentry
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New images from the Hubble Space Telescope of the FRII radio galaxy Pictor A reveal a previously undiscovered tidal tail, as well as a number of jet knots coinciding with a known X-ray and radio jet. The tidal tail is approximately 5 wide (3 kpc projected), starting 18 (12 kpc) from the center of Pictor A, and extends more than 90 (60 kpc). The knots are part of a jet observed to be about 4 (160 kpc) long, extending to a bright hotspot. These images are the first optical detections of this jet, and by extracting knot flux densities through three filters we set constraints on emission models. While the radio and optical flux densities are usually explained by synchrotron emission, there are several emission mechanisms which might be used to explain the X-ray flux densities. Our data rule out Doppler boosted inverse Compton scattering as a source of the high energy emission. Instead, we find that the observed emission can be well described by synchrotron emission from electrons with a low energy index ($psim2$) that dominates the radio band, while a high energy index ($psim3$) is needed for the X-ray band and the transition occurs in the optical/infrared band. This model is consistent with a continuous electron injection scenario.



قيم البحث

اقرأ أيضاً

A Chandra X-ray imaging observation of the jet in Pictor A showed a feature that appears to be a flare that faded between 2000 and 2002. The feature was not detected in a follow-up observation in 2009. The jet itself is over 150 kpc long and a kpc wi de, so finding year-long variability is surprising. Assuming a synchrotron origin of the observed high-energy photons and a minimum energy condition for the outflow, the synchrotron loss time of the X-ray emitting electrons is of order 1200 yr, which is much longer than the observed variability timescale. This leads to the possibility that the variable X-ray emission arises from a very small sub-volume of the jet, characterized by magnetic field that is substantially larger than the average over the jet.
The Chandra X-ray observatory has discovered several dozen anomalously X-ray-bright jets associated with powerful quasars. A popular explanation for the X-ray flux from the knots in these jets is that relativistic synchrotron-emitting electrons inver se-Compton scatter Cosmic Microwave Background (CMB) photons to X-ray energies (the IC/CMB model). This model predicts a high gamma-ray flux which should be detectable by the Fermi Large Area Telescope (LAT) for many sources. GeV-band upper limits from Fermi/LAT for the well-known anomalous X-ray jet in PKS 0637-752 were previously shown in Meyer et al., (2015) to violate the predictions of the IC/CMB model. Previously, measurements of the jet synchrotron spectrum, important for accurately predicting the gamma-ray flux level, were lacking between radio and infrared wavelengths. Here we present new Atacama Large Millimeter/submillimeter Array (ALMA) observations of the large-scale jet at 100, 233, and 319 GHz which further constrain the synchrotron spectrum, supporting the previously published empirical model. We also present updated limits from the Fermi/LAT using the new `Pass 8 calibration and approximately 30% more time on source. With these deeper limits we rule out the IC/CMB model at the 8.7 sigma level. Finally, we demonstrate that complete knowledge of the synchrotron SED is critical in evaluating the IC/CMB model.
We report an optical/UV jet and counterjet in M84, previously unreported in archival HST imaging. With archival VLA, ALMA, and Chandra imaging, we examine the first well-sampled spectral energy distribution of the inner jet of M84, where we find that multiple co-spatial spectral components are required. In particular, the ALMA data reveal that the radio spectrum of all four knots in the jet turns over at approximately 100 GHz, which requires a second component for the bright optical/UV emission. Further, the optical/UV has a soft spectrum and is inconsistent with the relatively flat X-ray spectrum, which indicates a third component at higher energies. Using archival VLA imaging, we have measured the proper motion of the innermost knots at 0.9+/-0.6 and 1.1+/-0.4 c, which when combined with the low jet-to-counterjet flux ratio yields an orientation angle for the system of 74 (+9,-18) degrees. In the radio, we find high fractional polarization of the inner jet of up to 30% while in the optical no polarization is detected (< 8%). We investigate different scenarios for explaining the particular multi-component SED of the knots. Inverse Compton models are ruled out due to the extreme departure from equipartition and the unrealistically high total jet power required. The multi-component SED can be naturally explained within a leptohadronic scenario, but at the cost of very high power in relativistic protons. A two-component synchrotron model remains a viable explanation, but more theoretical work is needed to explain the origin and properties of the electron populations.
The nearby active galaxy IC 310 (z=0.019), located in the Perseus cluster of galaxies is a bright and variable multi-wavelength emitter from the radio regime up to very high gamma-ray energies above 100 GeV. Very recently, a blazar-like compact radio jet has been found by parsec-scale VLBI imaging. Along with the unusually flat gamma-ray spectrum and variable high-energy emission, this suggests that IC 310 is the closest known blazar and therefore a key object for AGN research. As part of an intense observing program at TeV energies with the MAGIC telescopes, an exceptionally bright flare of IC 310 was detected in November 2012 reaching a flux level of up to >0.5 Crab units above 300 GeV. We have organized a multi-wavelength follow-up program, including the VLBA, Effelsberg 100 m, KVA, Swift, INTEGRAL, Fermi/LAT, and the MAGIC telescopes. We present preliminary results from the multi-wavelength follow-up program with the focus on the response of the jet to this exceptional gamma-ray flare.
125 - M. Kino , K. Wajima , N. Kawakatu 2018
Radio jets in active galaxies have been expected to interact with circumnuclear environments in their early phase evolutions. By performing the multi-epoch monitoring observation with the KVN and VERA Array (KaVA) at 43~GHz, we investigate the kinema tics of the notable newborn bright component C3 located at the tip of the recurrent jet of 3C~84. During 2015 August-September, we discover the flip of C3 and the amount of the flip is about 0.4~milli-arcsecond in angular scale, which corresponds to 0.14 parsec in physical scale. After the flip of C3, it wobbled at the same location for a few months and then it restarted to propagate towards the southern direction. The flux density of C3 coherently showed the monotonic increase during the observation period. The flip is in good agreement with hydrodynamical simulations of jets in clumpy ambient medium. We estimate the number density of the putative clump based on the momentum balance between the jet thrust and the ram pressure from the clump and it is about $10^{3-5}~{rm cm^{-3}}$. We briefly discuss possible origins of the clump.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا