ترغب بنشر مسار تعليمي؟ اضغط هنا

Bulk and surface characterization of In$_2$O$_3$(001) single crystals

83   0   0.0 ( 0 )
 نشر من قبل Michael Schmid
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A comprehensive bulk and surface investigation of high-quality In$_2$O$_3$(001) single crystals is reported. The transparent-yellow, cube-shaped single crystals were grown using the flux method. Inductively coupled plasma mass spectrometry (ICP-MS) reveals small residues of Pb, Mg, and Pt in the crystals. Four-point-probe measurements show a resistivity of 2.0 $pm$ 0.5 $times$ 10$^5$ {Omega} cm, which translates into a carrier concentration of $approx$10$^{12}$ cm$^{-3}$. The results from x-ray diffraction (XRD) measurements revise the lattice constant to 10.1150(5) {AA} from the previously accepted value of 10.117 {AA}. Scanning tunneling microscopy (STM) images of a reduced (sputtered/annealed) and oxidized (exposure to atomic oxygen at 300 {deg}C) surface show a step height of 5 {AA}, which indicates a preference for one type of surface termination. The surfaces stay flat without any evidence for macroscopic faceting under any of these preparation conditions. A combination of low-energy ion scattering (LEIS) and atomically resolved STM indicates an indium-terminated surface with small islands of 2.5 {AA} height under reducing conditions, with a surface structure corresponding to a strongly distorted indium lattice. Scanning tunneling spectroscopy (STS) reveals a pronounced surface state at the Fermi level ($E_F$). Photoelectron spectroscopy (PES) shows additional, deep-lying band gap states, which can be removed by exposure of the surface to atomic oxygen. Oxidation also results in a shoulder at the O 1s core level at a higher binding energy, possibly indicative of a surface peroxide species. A downward band bending of 0.4 eV is observed for the reduced surface, while the band bending of the oxidized surface is of the order of 0.1 eV or less.



قيم البحث

اقرأ أيضاً

Single crystals of the three-dimensional frustrated magnet and spin liquid candidate compound PbCuTe$_2$O$_6$, were grown using both the Travelling Solvent Floating Zone (TSFZ) and the Top-Seeded Solution Growth (TSSG) techniques. The growth conditio ns were optimized by investigating the thermal properties. The quality of the crystals was checked by polarized optical microscopy, X-ray Laue and X-ray powder diffraction, and compared to the polycrystalline samples. Excellent quality crystals were obtained by the TSSG method. Magnetic measurements of these crystals revealed a small anisotropy for different crystallographic directions in comparison with the previously reported data. The heat capacity of both single crystal and powder samples reveal a transition anomaly around 1~K. Curiously the position and magnitude of the transition are strongly dependent on the crystallite size and it is almost entirely absent for the smallest crystallites. A structural transition is suggested which accompanies the reported ferroelectric transition, and a scenario whereby it becomes energetically unfavourable in small crystallites is proposed.
The transparent semiconductor In$_{2}$O$_{3}$ is a technologically important material. It combines optical transparency in the visible frequency range and sizeable electric conductivity. We present a study of thermal conductivity of In$_{2}$O$_{3}$ c rystals and find that around 20 K, it peaks to a value as high as 5,000 WK$^{-1}$m$^{-1}$, comparable to the peak thermal conductivity in silicon and exceeded only by a handful of insulators. The amplitude of the peak drastically decreases in presence of a type of disorder, which does not simply correlate with the density of mobile electrons. Annealing enhances the ceiling of the phonon mean free path. Samples with the highest thermal conductivity are those annealed in the presence of hydrogen. Above 100 K, thermal conductivity becomes sample independent. In this intrinsic regime, dominated by phonon-phonon scattering, the magnitude of thermal diffusivity, $D$ becomes comparable to many other oxides, and its temperature dependence evolves towards $T^{-1}$. The ratio of $D$ to the square of sound velocity yields a scattering time which obeys the expected scaling with the Planckian time.
93 - Guowei Li , Qiunan Xu , Wujun Shi 2019
The band inversion in topological phase matters bring exotic physical properties such as the emergence of a topologically protected surface states. They strongly influence the surface electronic structures of the investigated materials and could serv e as a good platform to gain insight into the catalytic mechanism of surface reactions. Here we synthesized high-quality bulk single crystals of the topological semimetal Co$_3$Sn$_2$S$_2$. We found that at room temperature, Co$_3$Sn$_2$S$_2$ naturally hosts the band structure of a topological semimetal. This guarantees the existence of robust surface states from the Co atoms. Bulk single crystal of Co$_3$Sn$_2$S$_2$ exposes their Kagome lattice that constructed by Co atoms and have high electrical conductivity. They serves as catalytic centers for oxygen evolution process (OER), making bonding and electron transfer more efficient due to the partially filled $e_g$ orbital. The bulk single crystal exhibits outstanding OER catalytic performance, although the surface area is much smaller than that of Co-based nanostructured catalysts. Our findings emphasize the importance of tailoring topological non-trivial surface states for the rational design of high-activity electrocatalysts.
Bi$_2$O$_2$Se is a promising material for next-generation semiconducting electronics. It exhibits premature metallicity on the introduction of a tiny amount of electrons, the physics behind which remains elusive. Here we report on transport and diele ctric measurements in Bi$_2$O$_2$Se single crystals at various carrier densities. The temperature-dependent resistivity ($rho$) indicates a smooth evolution from the semiconducting to the metallic state. The critical concentration for the metal-insulator transition (MIT) to occur is extraordinarily low ($n_textrm{c}sim10^{16}$ cm$^{-3}$). The relative permittivity of the insulating sample is huge ($epsilon_textrm{r}approx155(10)$) and varies slowly with temperature. Combined with the light effective mass, a long effective Bohr radius ($a_textrm{B}^*approx36(2)$ $textrm{nm}$) is derived, which provides a reasonable interpretation of the metallic prematurity according to Motts criterion for MITs. The high electron mobility ($mu$) at low temperatures may result from the screening of ionized scattering centers due to the huge $epsilon_textrm{r}$. Our findings shed light on the electron dynamics in two dimensional (2D) Bi$_2$O$_2$Se devices.
118 - Alaska Subedi 2021
I use first principles calculations to investigate the thermal conductivity of $beta$-In$_2$O$_3$ and compare the results with that of $alpha$-Al$_2$O$_3$, $beta$-Ga$_2$O$_3$, and KTaO$_3$. The calculated thermal conductivity of $beta$-In$_2$O$_3$ ag rees well with the experimental data obtain recently, which found that the low-temperature thermal conductivity in this material can reach values above 1000 W/mK. I find that the calculated thermal conductivity of $beta$-Ga$_2$O$_3$ is larger than that of $beta$-In$_2$O$_3$ at all temperatures, which implies that $beta$-Ga$_2$O$_3$ should also exhibit high values of thermal conductivity at low temperatures. The thermal conductivity of KTaO$_3$ calculated ignoring the temperature-dependent phonon softening of low-frequency modes give high-temperature values similar that of $beta$-Ga$_2$O$_3$. However, the calculated thermal conductivity of KTaO$_3$ does not increase as steeply as that of the binary compounds at low temperatures, which results in KTaO$_3$ having the lowest low-temperature thermal conductivity despite having acoustic phonon velocities larger than that of $beta$-Ga$_2$O$_3$ and $beta$-In$_2$O$_3$. I attribute this to the fact that the acoustic phonon velocities at low frequencies in KTaO$_3$ is less uniformly distributed because its acoustic phonon branches are more dispersive compared to the binary oxides, which causes enhanced momentum loss even during the normal phonon-phonon scattering processes. I also calculate thermal diffusivity using the theoretically obtained thermal conductivity and heat capacity and find that all four materials exhibit the expected $T^{-1}$ behavior at high temperatures. Additionally, the calculated ratio of the average phonon scattering time to Planckian time is larger than the lower bound of 1 that has been observed empirically in numerous other materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا