ترغب بنشر مسار تعليمي؟ اضغط هنا

CMS-XSEN: LHC Neutrinos at CMS. Experiment Feasibility Study

97   0   0.0 ( 0 )
 نشر من قبل Gaetano Marco Dallavalle
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Buontempo




اسأل ChatGPT حول البحث

We discuss a CMS eXtension for Studying Energetic Neutrinos (CMS-XSEN). Neutrinos at the LHC are abundant and have unique features: their energies reach out to the TeV range, and the contribution of the {tau} flavour is sizeable. The measurement of their interaction cross sections has much physics potential. The pseudorapity range 4<|{eta}|<5 is of particular interest since leptonic W decays provide an additional contribution to the neutrino flux from b and c production. A modest detector of 4.1x$10^{27}$ nucleons/cm$^{2}$, placed in the LHC tunnel, 25 m from the interaction point, around the focusing magnet (Q1) closest to CMS, can cover that region. The hadronic calorimeter HF and the CMS forward shield will protect it from the debris of pp collisions. With a luminosity of 300/fb, foreseen for the LHC run in the years 2021-2023, the detector can observe over a thousand {tau} neutrino interactions, and a hundred TeV-neutrino interactions of all flavours. Several backgrounds are considered. A major source can be prompt muons from the interaction point. However, the CMS magnetic field and the structure of the Forward Shield make the estimation of their flux in the location of interest uncertain. Besides, machine induced backgrounds are expected to vary rapidly while moving along and away from the beam line. We propose to acquire experience during the 2018 LHC run by a brief test with a small Neutrino Experiment Demonstrator, based on nuclear emulsions.



قيم البحث

اقرأ أيضاً

The Compact Muon Solenoid (CMS) is a large and complex general purpose experiment at the CERN Large Hadron Collider (LHC), built and maintained by many collaborators from around the world. Efficient operation of the detector requires widespread and t imely access to a broad range of monitoring and status information. To this end the Web Based Monitoring (WBM) system was developed to present data to users located anywhere from many underlying heterogeneous sources, from real time messaging systems to relational databases. This system provides the power to combine and correlate data in both graphical and tabular formats of interest to the experimenters, including data such as beam conditions, luminosity, trigger rates, detector conditions, and many others, allowing for flexibility on the user side. This paper describes the WBM system architecture and describes how the system was used during the first major data taking run of the LHC.
We have created 3D models of the CMS detector and particle collision events in SketchUp, a 3D modelling program. SketchUp provides a Ruby API which we use to interface with the CMS Detector Description to create 3D models of the CMS detector. With th e Ruby API, we also have created an interface to the JSON-based event format used for the iSpy event display to create 3D models of CMS events. These models have many applications related to 3D representation of the CMS detector and events. Figures produced based on these models were used in conference presentations, journal publications, technical design reports for the detector upgrades, art projects, outreach programs, and other presentations.
The Resistive Plate Chambers (RPCs) are employed in the CMS experiment at the LHC as dedicated trigger system both in the barrel and in the endcap. This note presents results of the RPC detector uniformity and stability during the 2011 data taking pe riod, and preliminary results obtained with 2012 data. The detector uniformity has been ensured with a dedicated High Voltage scan with LHC collisions, in order to determine the optimal operating working voltage of each individual RPC chamber installed in CMS. Emphasis is given on the procedures and results of the High Voltage calibration. Moreover, an increased detector stability has been obtained by automatically taking into account temperature and atmospheric pressure variations in the CMS cavern.
XSEN (Cross Section of Energetic Neutrinos) is a small experiment designed to study, for the first time, neutrino-nucleon interactions (including the tau flavour) in the 0.5-1 TeV neutrino energy range. The detector will be installed in the decommiss ioned TI18 tunnel and uses nuclear emulsions. Its simplicity allows construction and installation before the LHC Run 3, 2021-2023; with 150/fb in Run3, the experiment can record up to two thousand neutrino interactions, and up to a hundred tau neutrino events. The XSEN detector intercepts the intense neutrino flux, generated by the LHC beams colliding in IP1, at large pseudo-rapidities, where neutrino energies can exceed the TeV. Since the neutrino-N interaction cross section grows almost linearly with energy, the detector can be light and still collect a considerable sample of neutrino interactions. In our proposal, the detector weighs less than 3 tons. It is lying slightly above the ideal prolongation of the LHC beam from the straight section; this configuration, off the beam axis, although very close to it, enhances the contribution of neutrinos from c and b decays, and consequently of tau neutrinos. The detector fits in the TI18 tunnel without modifications. We plan for a demonstrator experiment in 2021 with a small detector of about 0.5 tons; with 25/fb, nearly a hundred interactions of neutrinos of about 1 TeV can be recorded. The aim of this pilot run is a good in-situ characterisation of the machine-generated backgrounds, an experimental verification of the systematic uncertainties and efficiencies, and a tuning of the emulsion analysis infrastructure and efficiency. This Letter provides an overview of the experiment motivations, location, design constraints, technology choice, and operation.
The CMS RPC muon detector utilizes a gas recirculation system called closed loop (CL) to cope with large gas mixture volumes and costs. A systematic study of CL gas purifiers has been carried out over 400 days between July 2008 and August 2009 at CER N in a low-radiation test area, with the use of RPC chambers with currents monitoring, and gas analysis sampling points. The study aimed to fully clarify the presence of pollutants, the chemistry of purifiers used in the CL, and the regeneration procedure. Preliminary results on contaminants release and purifier characterization are reported.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا