ترغب بنشر مسار تعليمي؟ اضغط هنا

Web Based Monitoring in the CMS Experiment at CERN

101   0   0.0 ( 0 )
 نشر من قبل James Patrick
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Compact Muon Solenoid (CMS) is a large and complex general purpose experiment at the CERN Large Hadron Collider (LHC), built and maintained by many collaborators from around the world. Efficient operation of the detector requires widespread and timely access to a broad range of monitoring and status information. To this end the Web Based Monitoring (WBM) system was developed to present data to users located anywhere from many underlying heterogeneous sources, from real time messaging systems to relational databases. This system provides the power to combine and correlate data in both graphical and tabular formats of interest to the experimenters, including data such as beam conditions, luminosity, trigger rates, detector conditions, and many others, allowing for flexibility on the user side. This paper describes the WBM system architecture and describes how the system was used during the first major data taking run of the LHC.



قيم البحث

اقرأ أيضاً

96 - S. Buontempo 2018
We discuss a CMS eXtension for Studying Energetic Neutrinos (CMS-XSEN). Neutrinos at the LHC are abundant and have unique features: their energies reach out to the TeV range, and the contribution of the {tau} flavour is sizeable. The measurement of t heir interaction cross sections has much physics potential. The pseudorapity range 4<|{eta}|<5 is of particular interest since leptonic W decays provide an additional contribution to the neutrino flux from b and c production. A modest detector of 4.1x$10^{27}$ nucleons/cm$^{2}$, placed in the LHC tunnel, 25 m from the interaction point, around the focusing magnet (Q1) closest to CMS, can cover that region. The hadronic calorimeter HF and the CMS forward shield will protect it from the debris of pp collisions. With a luminosity of 300/fb, foreseen for the LHC run in the years 2021-2023, the detector can observe over a thousand {tau} neutrino interactions, and a hundred TeV-neutrino interactions of all flavours. Several backgrounds are considered. A major source can be prompt muons from the interaction point. However, the CMS magnetic field and the structure of the Forward Shield make the estimation of their flux in the location of interest uncertain. Besides, machine induced backgrounds are expected to vary rapidly while moving along and away from the beam line. We propose to acquire experience during the 2018 LHC run by a brief test with a small Neutrino Experiment Demonstrator, based on nuclear emulsions.
64 - Elena Graverini 2018
SHiP is a proposed general purpose fixed target facility at the CERN SPS accelerator. The main focus will be the physics of the Hidden Sector, textit{i.e.} search for heavy neutrinos, dark photons and other long lived very weakly interacting particle s. A dedicated detector, based on a long vacuum tank followed by a spectrometer and particle identification detectors, will allow probing a variety of models with exotic particles in the GeV mass range. Another dedicated detector will allow the study of Standard Model neutrino cross-sections and angular distribution, and allow detection of light dark matter with world leading sensitivity.
We have created 3D models of the CMS detector and particle collision events in SketchUp, a 3D modelling program. SketchUp provides a Ruby API which we use to interface with the CMS Detector Description to create 3D models of the CMS detector. With th e Ruby API, we also have created an interface to the JSON-based event format used for the iSpy event display to create 3D models of CMS events. These models have many applications related to 3D representation of the CMS detector and events. Figures produced based on these models were used in conference presentations, journal publications, technical design reports for the detector upgrades, art projects, outreach programs, and other presentations.
202 - K. Marton , G. Kiss , A. Laszlo 2014
The NA61 Experiment at CERN SPS is a large acceptance hadron spectrometer, aimed to studying of hadron-hadron, hadron-nucleus, and nucleus-nucleus interactions in a fixed target environment. The present paper discusses the construction and performanc e of the Low Momentum Particle Detector (LMPD), a small time projection chamber unit which has been added to the NA61 setup in 2012. The LMPD considerably extends the detector acceptance towards the backward region, surrounding the target in hadron-nucleus interactions. The LMPD features simultaneous range and ionization measurements, which allows for particle identification and momentum measurement in the 0.1-0.25 GeV/c momentum range for protons. The possibility of Z=1 particle identification in this range is directly demonstrated.
The COSINE-100 experiment is designed to test the DAMA experiment which claimed an observation of a dark matter signal from an annual modulation in their residual event rate. To measure the 1 %-level signal amplitude, it is crucial to control and mon itor nearly all environmental quantities that might systematically mimic the signal. The environmental monitoring also helps ensure a stable operation of the experiment. Here, we describe the design and performance of the centralized environmental monitoring system for the COSINE-100 experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا