ﻻ يوجد ملخص باللغة العربية
A physical field has an infinite number of degrees of freedom since it has a field value at each location of a continuous space. Therefore, it is impossible to know a field from finite measurements alone and prior information on the field is essential for field inference. An information theory for fields is needed to join the measurement and prior information into probabilistic statements on field configurations. Such an information field theory (IFT) is built upon the language of mathematical physics, in particular on field theory and statistical mechanics. IFT permits the mathematical derivation of optimal imaging algorithms, data analysis methods, and even computer simulation schemes. The application of IFT algorithms to astronomical datasets provides high fidelity images of the Universe and facilitates the search for subtle statistical signals from the Big Bang. The concepts of IFT might even pave the road to novel computer simulations that are aware of their own uncertainties.
In this paper we present the coordinates of 67 55 x 55 patches of sky which have the rare combination of both high stellar surface density (>0.5 arcmin^{-2} with 13<R<16.5 mag) and low extinction (E(B-V)<0.1). These fields are ideal for adaptive-opti
We construct the spin flaglet transform, a wavelet transform to analyze spin signals in three dimensions. Spin flaglets can probe signal content localized simultaneously in space and frequency and, moreover, are separable so that their angular and ra
In this Thesis, several results in quantum information theory are collected, most of which use entropy as the main mathematical tool. *While a direct generalization of the Shannon entropy to density matrices, the von Neumann entropy behaves different
The initial conditions of cosmological simulations are commonly drawn from a Gaussian ensemble. The limited number of modes inside a simulation volume gives rise to statistical fluctuations known as textit{sample variance}, limiting the accuracy of s
The emergence of a complex, large-scale organisation of cosmic matter into the Cosmic Web is a beautiful exemplification of how complexity can be produced by simple initial conditions and simple physical laws. In the epoch of Big Data in astrophysics