ﻻ يوجد ملخص باللغة العربية
In this Thesis, several results in quantum information theory are collected, most of which use entropy as the main mathematical tool. *While a direct generalization of the Shannon entropy to density matrices, the von Neumann entropy behaves differently. A long-standing open question is, whether there are quantum analogues of unconstrained non-Shannon type inequalities. Here, a new constrained non-von-Neumann type inequality is proven, a step towards a conjectured unconstrained inequality by Linden and Winter. *IID quantum state merging can be optimally achieved using the decoupling technique. The one-shot results by Berta et al. and Anshu at al., however, had to bring in additional mathematical machinery. We introduce a natural generalized decoupling paradigm, catalytic decoupling, that can reproduce the aforementioned results when used analogously to the application of standard decoupling in the asymptotic case. *Port based teleportation, a variant of standard quantum teleportation protocol, cannot be implemented perfectly. We prove several lower bounds on the necessary number of output ports N to achieve port based teleportation for given error and input dimension, showing that N diverges uniformly in the dimension of the teleported quantum system, for vanishing error. As a byproduct, a new lower bound for the size of the program register for an approximate universal programmable quantum processor is derived. *In the last part, we give a new definition for information-theoretic quantum non-malleability, strengthening the previous definition by Ambainis et al. We show that quantum non-malleability implies secrecy, analogous to quantum authentication. Furthermore, non-malleable encryption schemes can be used as a primitive to build authenticating encryption schemes. We also show that the strong notion of authentication recently proposed by Garg et al. can be fulfilled using 2-designs.
This is a chapter on quantum cryptography for the book A Multidisciplinary Introduction to Information Security to be published by CRC Press in 2011/2012. The chapter aims to introduce the topic to undergraduate-level and continuing-education student
This is a preliminary version of a book in progress on the theory of quantum communication. We adopt an information-theoretic perspective throughout and give a comprehensive account of fundamental results in quantum communication theory from the past
Quantum cryptographic technology (QCT) is expected to be a fundamental technology for realizing long-term information security even against as-yet-unknown future technologies. More advanced security could be achieved using QCT together with contempor
We derive complementarity relations for arbitrary quantum states of multiparty systems, of arbitrary number of parties and dimensions, between the purity of a part of the system and several correlation quantities, including entanglement and other qua
The entropy of a quantum system is a measure of its randomness, and has applications in measuring quantum entanglement. We study the problem of measuring the von Neumann entropy, $S(rho)$, and Renyi entropy, $S_alpha(rho)$ of an unknown mixed quantum