ﻻ يوجد ملخص باللغة العربية
Let $S_n$ denote the symmetric group on $n$ elements, and $Sigmasubseteq S_{n}$ a symmetric subset of permutations. Aldous spectral gap conjecture, proved by Caputo, Liggett and Richthammer [arXiv:0906.1238], states that if $Sigma$ is a set of transpositions, then the second eigenvalue of the Cayley graph $mathrm{Cay}left(S_{n},Sigmaright)$ is identical to the second eigenvalue of the Schreier graph on $n$ vertices depicting the action of $S_{n}$ on $left{ 1,ldots,nright}$. Inspired by this seminal result, we study similar questions for other types of sets in $S_{n}$. Specifically, we consider normal sets: sets that are invariant under conjugation. Relying on character bounds due to Larsen and Shalev [2008], we show that for large enough $n$, if $Sigmasubset S_{n}$ is a full conjugacy class, then the second eigenvalue of $mathrm{Cay}left(S_{n},Sigmaright)$ is roughly identical to the second eigenvalue of the Schreier graph depicting the action of $S_{n}$ on ordered $4$-tuples of elements from $left{ 1,ldots,nright}$. We further show that this type of result does not hold when $Sigma$ is an arbitrary normal set, but a slightly weaker one does hold. We state a conjecture in the same spirit regarding an arbitrary symmetric set $Sigmasubset S_{n}$, which yields surprisingly strong consequences.
Aldous spectral gap conjecture asserts that on any graph the random walk process and the random transposition (or interchange) process have the same spectral gap. We prove the conjecture using a recursive strategy. The approach is a natural extension
In this paper we will present the results of Artin--Markov on braid groups by using the Groebner--Shirshov basis. As a consequence we can reobtain the normal form of Artin--Markov--Ivanovsky as an easy corollary.
A finite subset of a Euclidean space is called an $s$-distance set if there exist exactly $s$ values of the Euclidean distances between two distinct points in the set. In this paper, we prove that the maximum cardinality among all 5-distance sets in
A subset $D$ of an Abelian group is $decomposable$ if $emptyset e Dsubset D+D$. In the paper we give partial answer to an open problem asking whether every finite decomposable subset $D$ of an Abelian group contains a non-empty subset $Zsubset D$ wit
Denote by $m(G)$ the largest size of a minimal generating set of a finite group $G$. We estimate $m(G)$ in terms of $sum_{pin pi(G)}d_p(G),$ where we are denoting by $d_p(G)$ the minimal number of generators of a Sylow $p$-subgroup of $G$ and by $pi(