ﻻ يوجد ملخص باللغة العربية
For a given finite dimensional Hopf algebra $H$ we describe the set of all equivalence classes of cocycle deformations of $H$ as an affine variety, using methods of geometric invariant theory. We show how our results specialize to the Universal Coefficients Theorem in the case of a group algebra, and we also give examples from other families of Hopf algebras, including dual group algebras and Bosonizations of Nichols algebras. In particular, we use the methods developed here to classify the cocycle deformations of a dual pointed Hopf algebra associated to the symmetric group on three letters. We also give an example of a cocycle deformation over a dual group algebra, which has only rational invariants, but which is not definable over the rational field. This differs from the case of group algebras, in which every two-cocycle is equivalent to one which is definable by its invariants.
Let $p$ and $q$ be distinct prime numbers. We study the Galois objects and cocycle deformations of the noncommutative, noncocommutative, semisimple Hopf algebras of odd dimension $p^3$ and of dimension $pq^2$. We obtain that the $p+1$ non-isomorphic
We show that all finite dimensional pointed Hopf algebras with the same diagram in the classification scheme of Andruskiewitsch and Schneider are cocycle deformations of each other. This is done by giving first a suitable characterization of such Hop
We generalize the theory of the second invariant cohomology group $H^2_{rm inv}(G)$ for finite groups $G$, developed in [Da2,Da3,GK], to the case of affine algebraic groups $G$, using the methods of [EG1,EG2,G]. In particular, we show that for connec
In this paper we introduce a trace-like invariant for the irreducible representations of a finite dimensional complex Hopf algebra H. We do so by considering the trace of the map induced by the antipode S on the endomorphisms End(V) of a self-dual mo
We determine the emph{$L_infty$-algebra} that controls deformations of a relative Rota-Baxter Lie algebra and show that it is an extension of the dg Lie algebra controlling deformations of the underlying LieRep pair by the dg Lie algebra controlling