ترغب بنشر مسار تعليمي؟ اضغط هنا

Intrinsic Magnetoresistance in Three-Dimensional Dirac Materials

78   0   0.0 ( 0 )
 نشر من قبل Shun-Qing Shen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, negative longitudinal and positive in-plane transverse magnetoresistance have been observed in most topological Dirac/Weyl semimetals, and some other topological materials. Here we present a quantum theory of intrinsic magnetoresistance for three-dimensional Dirac fermions at a finite and uniform magnetic field B. In a semiclassical regime, it is shown that the longitudinal magnetoresistance is negative and quadratic of a weak field B while the in-plane transverse magnetoresistance is positive and quadratic of B. The relative magnetoresistance is inversely quartic of the Fermi wave vector and only determined by the density of charge carriers, irrelevant to the external scatterings in the weak scattering limit. This intrinsic anisotropic magnetoresistance is measurable in systems with lower carrier density and high mobility. In the quantum oscillation regime a formula for the phase shift in Shubnikov-de Hass oscillation is present as a function of the mobility and the magnetic field, which is useful for experimental data analysis.



قيم البحث

اقرأ أيضاً

Recently it was suggested that transient excitonic instability can be realized in optically-pumped two-dimensional (2D) Dirac materials (DMs), such as graphene and topological insulator surface states. Here we discuss the possibility of achieving a t ransient excitonic condensate in optically-pumped three-dimensional (3D) DMs, such as Dirac and Weyl semimetals, described by non-equilibrium chemical potentials for photoexcited electrons and holes. Similar to the equilibrium case with long-range interactions, we find that for pumped 3D DMs with screened Coulomb potential two possible excitonic phases exist, an excitonic insulator phase and the charge density wave phase originating from intranodal and internodal interactions, respectively. In the pumped case, the critical coupling for excitonic instability vanishes; therefore, the two phases coexist for arbitrarily weak coupling strengths. The excitonic gap in the charge density wave phase is always the largest one. The competition between screening effects and the increase of the density of states with optical pumping results in a reach phase diagram for the transient excitonic condensate. Based on the static theory of screening, we find that under certain conditions for the value of the dimensionless coupling constant screening in 3D DMs can be weaker than in 2D DMs. Furthermore, we identify the signatures of the transient excitonic condensate that could be probed by scanning tunneling spectroscopy, photoemission and optical conductivity measurements. Finally, we provide estimates of critical temperatures and excitonic gaps for existing and hypothetical 3D DMs.
We report experimental observations of a novel magnetoresistance (MR) behavior of two-dimensional electron systems in perpendicular magnetic field in the ballistic regime, for k_BTtau/hbar>1. The MR grows with field and exhibits a maximum at fields B >1/mu, where mu is the electron mobility. As temperature increases the magnitude of the maximum grows and its position moves to higher fields. This effect is universal: it is observed in various Si- and GaAs- based two-dimensional electron systems. We compared our data with recent theory based on the Kohn anomaly modification in magnetic field, and found qualitative similarities and discrepancies.
We numerically study weak, random, spatial velocity modulation [quenched gravitational disorder (QGD)] in two-dimensional massless Dirac materials. QGD couples to the spatial components of the stress tensor; the gauge-invariant disorder strength is e ncoded in the quenched curvature. Although expected to produce negligible effects, wave interference due to QGD transforms all but the lowest-energy states into a quantum-critical stack with universal, energy-independent spatial fluctuations. We study five variants of velocity disorder, incorporating three different local deformations of the Dirac cone: flattening or steepening of the cone, pseudospin rotations, and nematic deformation (squishing) of the cone. QGD should arise for nodal excitations in the $d$-wave cuprate superconductors (SCs), due to gap inhomogeneity. Our results may explain the division between low-energy coherent (plane-wave-like) and finite-energy incoherent (spatially inhomogeneous) excitations in the SC and pseudogap regimes. The model variant that best matches the cuprate phenomenology possesses quenched random pseudospin rotations and nematic fluctuations. This model variant and another with pure nematic randomness exhibit a robust energy swath of stacked critical states, the width of which increases with increasing disorder strength. By contrast, quenched fluctuations that isotropically flatten or steepen the Dirac cone tend to produce strong disorder effects, with more rarified wave functions at low- and high-energies. Our models also describe the surface states of class DIII topological SCs.
Progress in the understanding of quantum critical properties of itinerant electrons has been hindered by the lack of effective models which are amenable to controlled analytical and numerically exact calculations. Here we establish that the disorder driven semimetal to metal quantum phase transition of three dimensional massless Dirac fermions could serve as a paradigmatic toy model for studying itinerant quantum criticality, which is solved in this work by exact numerical and approximate field theoretic calculations. As a result, we establish the robust existence of a non-Gaussian universality class, and also construct the relevant low energy effective field theory that could guide the understanding of quantum critical scaling for many strange metals. Using the kernel polynomial method (KPM), we provide numerical results for the calculated dynamical exponent ($z$) and correlation length exponent ($ u$) for the disorder-driven semimetal (SM) to diffusive metal (DM) quantum phase transition at the Dirac point for several types of disorder, establishing its universal nature and obtaining the numerical scaling functions in agreement with our field theoretical analysis.
The conductivity of an electron gas can be alternatively calculated either from the current--current or from the density--density correlation function. Here, we compare these two frequently used formulations of the Kubo formula for the two--dimension al Dirac electron gas by direct evaluations for several special cases. Assuming the presence of weak disorder we investigate perturbatively both formulas at and away from the Dirac point. While to zeroth order in the disorder amplitude both formulations give identical results, with some very strong assumptions though, they show significant discrepancies already in first order. At half filling we evaluate all second order diagrams. Virtually none of the topologically identical diagrams yield the same corrections for both formulations. We conclude that a direct comparison of conductivities of disordered system calculated in both formulas is not possible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا