ترغب بنشر مسار تعليمي؟ اضغط هنا

Excitonic instability in optically-pumped three-dimensional Dirac materials

90   0   0.0 ( 0 )
 نشر من قبل Anna Pertsova Dr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently it was suggested that transient excitonic instability can be realized in optically-pumped two-dimensional (2D) Dirac materials (DMs), such as graphene and topological insulator surface states. Here we discuss the possibility of achieving a transient excitonic condensate in optically-pumped three-dimensional (3D) DMs, such as Dirac and Weyl semimetals, described by non-equilibrium chemical potentials for photoexcited electrons and holes. Similar to the equilibrium case with long-range interactions, we find that for pumped 3D DMs with screened Coulomb potential two possible excitonic phases exist, an excitonic insulator phase and the charge density wave phase originating from intranodal and internodal interactions, respectively. In the pumped case, the critical coupling for excitonic instability vanishes; therefore, the two phases coexist for arbitrarily weak coupling strengths. The excitonic gap in the charge density wave phase is always the largest one. The competition between screening effects and the increase of the density of states with optical pumping results in a reach phase diagram for the transient excitonic condensate. Based on the static theory of screening, we find that under certain conditions for the value of the dimensionless coupling constant screening in 3D DMs can be weaker than in 2D DMs. Furthermore, we identify the signatures of the transient excitonic condensate that could be probed by scanning tunneling spectroscopy, photoemission and optical conductivity measurements. Finally, we provide estimates of critical temperatures and excitonic gaps for existing and hypothetical 3D DMs.



قيم البحث

اقرأ أيضاً

123 - A. Pertsova , A.V. Balatsky 2019
Driven and non-equilibrium quantum states of matter have attracted growing interest in both theoretical and experimental studies in condensed matter physics. We review recent progress in realizing transient collective states in driven or pumped Dirac materials (DMs). In particular, we focus on optically-pumped DMs which have been theoretically proposed as a promising platform for observation of a transient excitonic instability. Optical pumping combined with the linear (Dirac) dispersion of the electronic spectrum offers a knob for tuning the effective interaction between the photoexcited electrons and holes, and thus provides a way of reducing the critical coupling for excitonic instability. As a result, a transient excitonic condensate could be achieved in a pumped DM while it is not feasible in equilibrium. We provide a unifying theoretical framework for describing transient collective states in two- and three-dimensional DMs. We describe experimental signatures of the transient excitonic state and summarize numerical estimates of the magnitude of the effect, namely the size of the dynamically-induced excitonic gaps and the values of the critical temperatures for several specific systems. We also discuss general guidelines for identifying promising material candidates.Finally, we comment recent experimental efforts in realizing transient excitonic condensate in pumped DMs and outline outstanding issues and possible future directions.
Recently, negative longitudinal and positive in-plane transverse magnetoresistance have been observed in most topological Dirac/Weyl semimetals, and some other topological materials. Here we present a quantum theory of intrinsic magnetoresistance for three-dimensional Dirac fermions at a finite and uniform magnetic field B. In a semiclassical regime, it is shown that the longitudinal magnetoresistance is negative and quadratic of a weak field B while the in-plane transverse magnetoresistance is positive and quadratic of B. The relative magnetoresistance is inversely quartic of the Fermi wave vector and only determined by the density of charge carriers, irrelevant to the external scatterings in the weak scattering limit. This intrinsic anisotropic magnetoresistance is measurable in systems with lower carrier density and high mobility. In the quantum oscillation regime a formula for the phase shift in Shubnikov-de Hass oscillation is present as a function of the mobility and the magnetic field, which is useful for experimental data analysis.
84 - Shan Dong , Yuanchang Li 2021
Motivated by the recent synthesis of two-dimensional monolayer AlSb, we theoretically investigate its ground state and electronic properties using the first-principles calculations coupled with Bethe-Salpeter equation. An excitonic instability is rev ealed as a result of larger exciton binding energy than the corresponding one-electron energy gap by $sim$0.1 eV, which is an indicative of a many-body ground state accompanied by spontaneous exciton generation. Including the spin-orbit coupling is proven to be a must to correctly predict the ground state. At room temperature, the two-dimensional monolayer AlSb is a direct gap semiconductor with phonon-limited electron and hole mobilities both around 1700 cm$^2$/V$cdot$s. These results show that monolayer AlSb may provide a promising platform for realization of the excitonic insulator and for applications in the next-generation electronic devices.
A wide range of materials, like d-wave superconductors, graphene, and topological insulators, share a fundamental similarity: their low-energy fermionic excitations behave as massless Dirac particles rather than fermions obeying the usual Schrodinger Hamiltonian. This emergent behavior of Dirac fermions in condensed matter systems defines the unifying framework for a class of materials we call Dirac materials. In order to establish this class of materials, we illustrate how Dirac fermions emerge in multiple entirely different condensed matter systems and we discuss how Dirac fermions have been identified experimentally using electron spectroscopy techniques (angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy). As a consequence of their common low-energy excitations, this diverse set of materials shares a significant number of universal properties in the low-energy (infrared) limit. We review these common properties including nodal points in the excitation spectrum, density of states, specific heat, transport, thermodynamic properties, impurity resonances, and magnetic field responses, as well as discuss many-body interaction effects. We further review how the emergence of Dirac excitations is controlled by specific symmetries of the material, such as time-reversal, gauge, and spin-orbit symmetries, and how by breaking these symmetries a finite Dirac mass is generated. We give examples of how the interaction of Dirac fermions with their distinct real material background leads to rich novel physics with common fingerprints such as the suppression of back scattering and impurity-induced resonant states.
Dirac semimetals, the materials featured with discrete linearly crossing points (called Dirac points) between four bands, are critical states of topologically distinct phases. Such gapless topological states have been accomplished by a band-inversion mechanism, in which the Dirac points can be annihilated pairwise by perturbations without changing the symmetry of the system. Here, we report an experimental observation of Dirac points that are enforced completely by the crystal symmetry, using a nonsymmorphic three-dimensional phononic crystal. Intriguingly, our Dirac phononic crystal hosts four spiral topological surface states, in which the surface states of opposite helicities intersect gaplessly along certain momentum lines, as confirmed by our further surface measurements. The novel Dirac system may release new opportunities for studying the elusive (pseudo)relativistic physics, and also offer a unique prototype platform for acoustic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا