ﻻ يوجد ملخص باللغة العربية
We theoretically investigate electrical transport in a quantum Hall system hosting bulk and edge current carrying states. Spatially varying magnetic and electric confinement creates pairs of current carrying lines that drift in the same or opposite directions depending on whether confinement is applied by a magnetic split gate or a magnetic strip gate. We study the electronic structure through calculations of the local density of states and conductivity of the channel as a function of the chirality and wave-function overlap of these states. We demonstrate a shift of the conductivity peaks to high or low magnetic field depending on chirality of pairs of edge states and the effect of chirality on backscattering amplitude associated with collisional processes.
We develop a manifest non-Hermitian approach of spectral and transport properties of two- dimensional mesoscopic systems in strong magnetic field. The finite system to which several ter- minals are attached constitutes an open system that can be desc
Motivated by recent experiments we consider transport across an interacting magnetic impurity coupled to the Majorana zero mode (MZM) observed at the boundary of a topological superconductor (SC). In the presence of a finite tunneling amplitude we ob
We study the heat transport along an edge state of a two-dimensional electron gas in the quantum Hall regime, in contact to two reservoirs at different temperatures. We consider two exactly solvable models for the edge state coupled to the reservoirs
The electronic states of an electrostatically confined cylindrical graphene quantum dot and the electric transport through this device are studied theoretically within the continuum Dirac-equation approximation and compared with numerical results obt
We report on the fate of the quantum Hall effect in graphene under strong laser illumination. By using Floquet theory combined with both a low energy description and full tight-binding models, we clarify the selection rules, the quasienergy band stru