ﻻ يوجد ملخص باللغة العربية
We develop a manifest non-Hermitian approach of spectral and transport properties of two- dimensional mesoscopic systems in strong magnetic field. The finite system to which several ter- minals are attached constitutes an open system that can be described by an effective Hamiltonian. The life time of the quantum states expressed by the energy imaginary part depends specifically on the lead-system coupling and makes the difference among three regimes: resonant, integer quan- tum Hall effect and superradiant. The discussion is carried on in terms of edge state life time in different gaps, channel formation, role of hybridization, transmission coefficients quantization. A toy model helps in understanding non-Hermitian aspects in open systems.
Topological stability of the edge states is investigated for non-Hermitian systems. We examine two classes of non-Hermitian Hamiltonians supporting real bulk eigenenergies in weak non-Hermiticity: SU(1,1) and SO(3,2) Hamiltonians. As an SU(1,1) Hamil
We investigate the validity of the non-Hermitian Hamiltonian approach in describing quantum transport in disordered tight-binding networks connected to external environments, acting as sinks. Usually, non-Hermitian terms are added, on a phenomenologi
We have investigated low-temperature electronic transport on InAs/GaSb double quantum wells, a system which promises to be electrically tunable from a normal to a topological insulator. Hall bars of $50,mu$m in length down to a few $mu$m gradually de
We theoretically investigate electrical transport in a quantum Hall system hosting bulk and edge current carrying states. Spatially varying magnetic and electric confinement creates pairs of current carrying lines that drift in the same or opposite d
Eigenenergies of a non-Hermitian system without parity-time symmetry are complex in general. Here, we show that the chiral boundary states of non-Hermitian topological insulators without parity-time symmetry can be Hermitian with real eigenenergies u