ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of Varying the TD-lc-DFTB Range-Separation Parameter on Charge and Energy Transfer in a Model Pentacene/Buckminsterfullerene Heterojunction

284   0   0.0 ( 0 )
 نشر من قبل Ala Aldin Darghouth
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Density-functional tight binding (DFTB) has become a popular form of approximate density-functional theory (DFT) based upon a minimal valence basis set and neglect of all but two center integrals. We report the results of our tests of a recent long-range correction (lc) for time-dependent (TD) lc-DFTB by carrying out TD-lc-DFTB fewest switches surface hopping (FSSH) calculations of energy and charge transfer times using the relatively new DFTBaby program. An advantage of this method is the ability to run enough trajectories to get meaningful ensemble averages. Our interest in the present work is less in determining exact energy and charge transfer rates than in understanding how the results of these calculations vary with the value of the range-separation parameter (Rlc = 1/{mu}) for a model organic solar cell heterojunction consisting of a van der Waals complex P/F made up of single pentacene (P) molecule together with a single buckminsterfullerene (F) molecule. The default value of Rlc = 3.03 a0 is found to be much too small as neither energy nor charge transfer is observed until Rlc ~ 10 a0. Tests at a single geometry show that best agreement with high-quality ab-initio spectra is obtained in the limit of no lc (i.e., very large Rlc.) A plot of energy and charge transfer rates as a function of Rlc is provided which suggests that a value of Rlc ~ 15 a0 yields the typical literature charge transfer time of about 100 fs. However, energy and charge transfer times become as high as ~ 300 fs for Rlc ~ 25 a0. A closer examination of the charge transfer process P*/F to P+/F- shows that the initial electron transfer is accompanied by a partial delocalization of the P hole onto F which then relocalizes back onto P, consistent with a polaron-like picture in which the nuclei relax to stabilize the resultant redistribution of charges.



قيم البحث

اقرأ أيضاً

The key factors determining the emission bandwidth of thermally activated delayed fluorescence (TADF) are investi-gated by combining computational and experimental approaches. To achieve high internal quantum efficiencies (IQEs) in metal-free organic light emitting diode via TADF, the first triplet (T1) to first singlet (S1) reverse intersystem crossing (rISC) is promoted by configuring molecules in an electron donor-acceptor (D-A) alternation with a large di-hedral angle, which results in a small energy gap ({Delta}EST) between S1 and T1 levels. This allows for effective non-radiative up-conversion of triplet excitons to singlet excitons that fluoresce. However, this traditional molecular de-sign of TADF results in broad emission spectral bands (full-width at half-maximum = 70-100 nm). Despite reports suggesting that suppressing the D-A dihedral rotation narrows the emission band, the origin of emission broadening remains elusive. Indeed, our results suggest that the intrinsic TADF emission bandwidth is primarily determined by the charge transfer character of the molecule, rather than its propensity for rotational motion, which offers a renewed perspective on the rational molecular design of organic emitters exhibiting sharp emission spectra.
Exciton dissociation at heterojunctions in photovoltaic devices is not completely understood despite being fundamentally necessary to generate electrical current. One of the fundamental issues for ab initio calculations is that hybrid interfaces comb ining materials with Wannier-Mott excitons and those with Frenkel excitons can easily require thousands of atoms to encompass the exciton-wave function. The problem is further exacerbated by a large permittivity difference at the interface, which requires meso-scale boundary conditions to accurately predict electrostatic potentials. For these reasons, we have constructed a model of excited states at hybrid interfaces based on an effective mass Schroedinger equation. In this continuum model, carrier wave functions are represented by their envelope function rather than resolving the atomic scale variations. Electrostatic interactions are accounted for using the Poisson equation. For our model system, we use a pentacene/silicon interface. Because carrier mobility is low in pentacene relative to silicon, the hole is frozen such that it only interacts with the electron though an immobile positive charge density. The inputs to this model are as follows: dielectric permittivities, electron effective masses, interfacial width, band alignment, and the hole wave function. We find that the energetic favorability of charge transfer states relative to bulk excitons is most easily controlled by band alignment. However, when both states have similar energies, interface proximity and electrostatics become important secondary means of tuning the relative stability of these states.
The thermal deposition and transfer Printing method had been used to produce pentacene thin-films on SiO2/Si and plastic substrates (PMMA and PVP), respectively. X-ray diffraction patterns of pentacene thin films showed reflections associated with hi ghly ordered polycrystalline films and a coexistence of two polymorph phases classified by their d-spacing, d(001): 14.4 and 15.4 A.The dependence of the c-axis correlation length and the phase fraction on the film thickness and printing temperature were measured. A transition from the 15.4 A phase towards 14.4 A phase was also observed with increasing film thickness. An increase in the c-axis correlation length of approximately 12% ~16% was observed for Pn films transfer printed onto a PMMA coated PET substrate at 100~120 C as compared to as-grown Pn films on SiO2/Si substrates. The transfer printing method is shown to be an attractive for the fabrication of pentacene thin-film transistors on flexible substrates partly because of the resulting improvement in the quality of the pentacene film.
The energy conversion of oxygenic photosynthesis is triggered by primary charge separation in proteins at the photosystem II reaction center. Here, we investigate the impacts of the protein environment and intramolecular vibrations on primary charge separation at the photosystem II reaction center. This is accomplished by combining the quantum dynamic theories of condensed phase electron transfer with quantum chemical calculations to evaluate the vibrational Huang-Rhys factors of chlorophyll and pheophytin molecules. We report that individual vibrational modes play a minor role in promoting the charge separation, contrary to the discussion in recent publications. Nevertheless, these small contributions accumulate to considerably influence the charge separation rate, resulting in sub-picosecond charge separation almost independent of the driving force and temperature. We suggest that the intramolecular vibrations complement the robustness of the charge separation in the photosystem II reaction center against the inherently large static disorder of the involved electronic energies.
We investigate the role of quantum coherence in modulating the energy transfer rate between two independent energy donors and a single acceptor participating in an excitonic energy transfer process. The energy transfer rate depends explicitly on the nature of the initial coherent superposition state of the two donors and we connect it to the observed absorption profile of the acceptor and the stimulated emission profile of the energy donors. We consider simple models with mesoscopic environments interacting with the donors and the acceptor and compare the expression we obtained for the energy transfer rate with the results of numerical integration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا