ﻻ يوجد ملخص باللغة العربية
We show that the (graded) spectral flow of a family of Toeplitz operators on a complete Riemannian manifold is equal to the index of a certain Callias-type operator. When the dimension of the manifold is even this leads to a cohomological formula for the spectral flow. As an application, we compute the spectral flow of a family of Toeplitz operators on a strongly pseudoconvex domain in $C^n$. This result is similar to the Boutet de Monvels computation of the index of a single Toeplitz operator on a strongly pseudoconvex domain. Finally, we show that the bulk-boundary correspondence in a tight-binding model of topological insulators is a special case of our result. In the appendix, Koen van den Dungen reviewed the main result in the context of (unbounded) KK-theory.
We study the Berezin-Toeplitz quantization on symplectic manifolds making use of the full off-diagonal asymptotic expansion of the Bergman kernel. We give also a characterization of Toeplitz operators in terms of their asymptotic expansion. The semi-
In this paper, we will provide a review of the geometric construction, proposed by Witten, of the SU(n) quantum representations of the mapping class groups which are part of the Reshetikhin-Turaev TQFT for the quantum group U_q(sl(n, C)). In particul
Toeplitz operators are met in different fields of mathematics such as stochastic processes, signal theory, completeness problems, operator theory, etc. In applications, spectral and mapping properties are of particular interest. In this survey we wil
The two-sphere valued wave map flow on a Lorentzian domain R x Sigma, where Sigma is any flat two-torus, is studied. The Cauchy problem with initial data tangent to the moduli space of holomorphic maps Sigma -> S^2 is considered, in the limit of smal
We compute, in topological terms, the spectral flow of an arbitrary family of self-adjoint Dirac type operators with classical (local) boundary conditions on a compact Riemannian manifold with boundary under the assumption that the initial and termin