ﻻ يوجد ملخص باللغة العربية
The two-sphere valued wave map flow on a Lorentzian domain R x Sigma, where Sigma is any flat two-torus, is studied. The Cauchy problem with initial data tangent to the moduli space of holomorphic maps Sigma -> S^2 is considered, in the limit of small initial velocity. It is proved that wave maps, in this limit, converge in a precise sense to geodesics in the moduli space of holomorphic maps, with respect to the L^2 metric. This establishes, in a rigorous setting, a long-standing informal conjecture of Ward.
We introduce the notion of a general cup product bundle gerbe and use it to define the Weyl bundle gerbe on T x SU(n)/T. The Weyl map from T x SU(n)/T to SU(n) is then used to show that the pullback of the basic bundle gerbe on SU(n) defined by the s
We prove the hypersymplectic flow of simple type on standard torus $mathbb{T}^4$ exists for all time and converges to the standard flat structure modulo diffeomorphisms. This result in particular gives the first example of a cohomogeneity-one $G_2$-L
We investigate a parabolic-elliptic system which is related to a harmonic map from a compact Riemann surface with a smooth boundary into a Lorentzian manifold with a warped product metric. We prove that there exists a unique global weak solution for
We show that the (graded) spectral flow of a family of Toeplitz operators on a complete Riemannian manifold is equal to the index of a certain Callias-type operator. When the dimension of the manifold is even this leads to a cohomological formula for
We construct new smooth solutions to the Hull-Strominger system, showing that the Fu-Yau solution on torus bundles over K3 surfaces can be generalized to torus bundles over K3 orbifolds. In particular, we prove that, for $13 leq k leq 22$ and $14leq