ترغب بنشر مسار تعليمي؟ اضغط هنا

Bulk and surface states carried supercurrent in ballistic Nb-Dirac semimetal Cd3As2 nanowire-Nb junctions

110   0   0.0 ( 0 )
 نشر من قبل Zhi-Min Liao
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A three-dimensional Dirac semimetal has bulk Dirac cones in all three momentum directions and Fermi arc-like surface states, and can be converted into a Weyl semimetal by breaking time-reversal symmetry. However, the highly conductive bulk state usually hides the electronic transport from the surface state in Dirac semimetal. Here, we demonstrate the supercurrent carried by bulk and surface states in Nb-Cd3As2 nanowire-Nb short and long junctions, respectively. For the 1 micrometer long junction, the Fabry-Perot interferences induced oscillations of the critical supercurrent are observed, suggesting the ballistic transport of the surface states carried supercurrent, where the bulk states are decoherent and the topologically protected surface states still keep coherent. Moreover, a superconducting dome is observed in the long junction, which is attributed to the enhanced dephasing from the interaction between surface and bulk states as tuning gate voltage to increase the carrier density. The superconductivity of topological semimetal nanowire is promising for braiding of Majorana fermions toward topological quantum computing.



قيم البحث

اقرأ أيضاً

We report on the fabrication and measurements of planar mesoscopic Josephson junctions formed by InAs nanowires coupled to superconducting Nb terminals. The use of Si-doped InAs-nanowires with different bulk carrier concentrations allowed to tune the properties of the junctions. We have studied the junction characteristics as a function of temperature, gate voltage, and magnetic field. In junctions with high doping concentrations in the nanowire Josephson supercurrent values up to 100,nA are found. Owing to the use of Nb as superconductor the Josephson coupling persists at temperatures up to 4K. In all junctions the critical current monotonously decreased with the magnetic field, which can be explained by a recently developed theoretical model for the proximity effect in ultra-small Josephson junctions. For the low-doped Josephson junctions a control of the critical current by varying the gate voltage has been demonstrated. We have studied conductance fluctuations in nanowires coupled to superconducting and normal metal terminals. The conductance fluctuation amplitude is found to be about 6 times larger in superconducting contacted nanowires. The enhancement of the conductance fluctuations is attributed to phase-coherent Andreev reflection as well as to the large number of phase-coherent channels due to the large superconducting gap of the Nb electrodes.
We experimentally studied the Josephson supercurrent in Nb/InN-nanowire/Nb junctions. Large critical currents up to 5.7 $mu$A have been achieved, which proves the good coupling of the nanowire to the superconductor. The effect of a magnetic field per pendicular to the plane of the Josephson junction on the critical current has been studied. The observed monotonous decrease of the critical current with magnetic field is explained by the magnetic pair-breaking effect in planar Josephson junctions of ultra-narrow width [J. C. Cuevas and F. S. Bergeret, Phys. Rev. Lett. 99, 217002 (2007)]
Highly transmissive ballistic junctions are demonstrated between Nb and the two-dimensional electron gas formed at an InAs/AlSb heterojunction. A reproducible fabrication protocol is presented yielding high critical supercurrent values. Current-volta ge characteristics were measured down to 0.4 K and the observed supercurrent behavior was analyzed within a ballistic model in the clean limit. This investigation allows us to demonstrate an intrinsic interface transmissivity approaching 90%. The reproducibility of the fabrication protocol makes it of interest for the experimental study of InAs-based superconductor-semiconductor hybrid devices.
The possibility of inducing superconductivity in type-I Weyl semimetal through coupling its surface to a superconductor was investigated. A single crystal of NbP, grown by chemical vapor transport method, was carefully characterized by XRD, EDX, SEM, ARPES techniques and by electron transport measurements. The mobility spectrum of the carriers was determined. For the studies of interface transmission, the (001) surface of the crystal was covered by several hundred nm thick metallic layers of either Pb, or Nb, or In. DC current-voltage characteristics and AC differential conductance through the interfaces as a function of the DC bias were investigated. When the metals become superconducting, all three types of junctions show conductance increase, pointing out the Andreev reflection as a prevalent contribution to the subgap conductance. In the case of Pb-NbP and Nb-NbP junctions, the effect is satisfactorily described by modified Blonder-Tinkham-Klapwijk model. The absolute value of the conductance is much smaller than that for the bulk crystal, indicating that the transmission occurs through only a small part of the contact area. An opposite situation occurs in In-NbP junction, where the conductance at the peak reaches the bulk value indicating that almost whole contact area is transmitting and, additionally, a superconducting proximity phase is formed in the material. We interpret this as a result of indium diffusion into NbP, where the metal atoms penetrate the surface barrier and form very transparent superconductor-Weyl semimetal contact inside. However, further diffusion occurring already at room temperature leads to degradation of the effect, so it is observed only in the pristine structures. Despite of this, our observation directly demonstrates possibility of inducing superconductivity in a type-I Weyl semimetal.
The physics of the $pi$ phase shift in ferromagnetic Josephson junctions may enable a range of applications for spin-electronic devices and quantum computing. We investigate transitions from ``0 to ``$pi$ states in Nb/Fe/Nb Josephson junctions by var ying the Fe barrier thickness from 0.5 nm to 5.5 nm. From magnetic measurements we estimate for Fe a magnetic dead layer of about 1.1 nm. By fitting the characteristic voltage oscillations with existing theoretical models we extrapolate an exchange energy of 256 meV, a Fermi velocity of $1.98 times 10^5$ m/s and an electron mean free path of 6.2 nm, in agreement with other reported values. From the temperature dependence of the $I_CR_N$ product we show that its decay rate exhibits a nonmonotonic oscillatory behavior with the Fe barrier thickness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا