ﻻ يوجد ملخص باللغة العربية
We experimentally studied the Josephson supercurrent in Nb/InN-nanowire/Nb junctions. Large critical currents up to 5.7 $mu$A have been achieved, which proves the good coupling of the nanowire to the superconductor. The effect of a magnetic field perpendicular to the plane of the Josephson junction on the critical current has been studied. The observed monotonous decrease of the critical current with magnetic field is explained by the magnetic pair-breaking effect in planar Josephson junctions of ultra-narrow width [J. C. Cuevas and F. S. Bergeret, Phys. Rev. Lett. 99, 217002 (2007)]
We report on the fabrication and measurements of planar mesoscopic Josephson junctions formed by InAs nanowires coupled to superconducting Nb terminals. The use of Si-doped InAs-nanowires with different bulk carrier concentrations allowed to tune the
A three-dimensional Dirac semimetal has bulk Dirac cones in all three momentum directions and Fermi arc-like surface states, and can be converted into a Weyl semimetal by breaking time-reversal symmetry. However, the highly conductive bulk state usua
Semiconductor-superconductor hybrid systems provide a promising platform for hosting unpaired Majorana fermions towards the realisation of fault-tolerant topological quantum computing. In this study, we employ the Keldysh Non-Equilibrium Greens funct
Junctions created by coupling two superconductors via a semiconductor nanowire in the presence of high magnetic fields are the basis for detection, fusion, and braiding of Majorana bound states. We study NbTiN/InSb nanowire/NbTiN Josephson junctions
Electrical properties of Josephson junctions Nb/FeSi/Nb with superconductor/ferromagnet (S/F)interfaces are presented. Due to Andreev reflection the nearly exact quadruple enhancement of the tunnel junction differential conductance compared with that