ﻻ يوجد ملخص باللغة العربية
The initial conditions, physics, and outcome of planet formation are now constrained by detailed observations of protoplanetary disks, laboratory experiments, and the discovery of thousands of extrasolar planetary systems. These developments have broadened the range of processes that are considered important in planet formation, to include disk turbulence, radial drift, planet migration, and pervasive post-formation dynamical evolution. The N-body collisional growth of planetesimals and protoplanets, and the physics of planetary envelopes - key ingredients of the classical model - remain central. I provide an overview of the current status of planet formation theory, and discuss how it connects to observations.
The Kepler-discovered Systems with Tightly-packed Inner Planets (STIPs), typically with several planets of Earth to super-Earth masses on well-aligned, sub-AU orbits may host the most common type of planets, including habitable planets, in the Galaxy
Our galaxy is full with planets. We now know that planets and planetary systems are diverse and come with different sizes, masses and compositions, as well as various orbital architectures. Although there has been great progress in understanding plan
Perhaps because of the popularity that trajectory-based methodologies have always had in Chemistry and the important role they have played, Bohmian mechanics has been increasingly accepted within this community, particularly in those areas of the the
While it is widely accepted that planets are formed in protoplanetary disks, there is still much debate on when this process happens. In a few cases protoplanets have been directly imaged, but for the vast majority of systems, disk gaps and cavities
The AEI 10 m prototype interferometer facility is currently being constructed at the Albert Einstein Institute in Hannover, Germany. It aims to perform experiments for future gravitational wave detectors using advanced techniques. Seismically isolate