ترغب بنشر مسار تعليمي؟ اضغط هنا

A case of simultaneous star and planet formation

78   0   0.0 ( 0 )
 نشر من قبل Felipe O. Alves
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Felipe O. Alves




اسأل ChatGPT حول البحث

While it is widely accepted that planets are formed in protoplanetary disks, there is still much debate on when this process happens. In a few cases protoplanets have been directly imaged, but for the vast majority of systems, disk gaps and cavities -- seen especially in dust continuum observations -- have been the strongest evidence of recent or on-going planet formation. We present ALMA observations of a nearly edge-on ($i = 75^{circ}$) disk containing a giant gap seen in dust but not in $^{12}$CO gas. Inside the gap, the molecular gas has a warm (100 K) component coinciding in position with a tentative free-free emission excess observed with the VLA. Using 1D hydrodynamic models, we find the structure of the gap is consistent with being carved by a planet with 4-70 $M_{rm Jup}$. The coincidence of free-free emission inside the planet-carved gap points to the planet being very young and/or still accreting. In addition, the $^{12}$CO observations reveal low-velocity large scale filaments aligned with the disk major axis and velocity coherent with the disk gas that we interpret as ongoing gas infall from the local ISM. This system appears to be an interesting case where both a star (from the environment and the disk) and a planet (from the disk) are growing in tandem.



قيم البحث

اقرأ أيضاً

The goal of the Ariel space mission is to observe a large and diversified population of transiting planets around a range of host star types to collect information on their atmospheric composition. The planetary bulk and atmospheric compositions bear the marks of the way the planets formed: Ariels observations will therefore provide an unprecedented wealth of data to advance our understanding of planet formation in our Galaxy. A number of environmental and evolutionary factors, however, can affect the final atmospheric composition. Here we provide a concise overview of which factors and effects of the star and planet formation processes can shape the atmospheric compositions that will be observed by Ariel, and highlight how Ariels characteristics make this mission optimally suited to address this very complex problem.
Statistical analyses from exoplanet surveys around low-mass stars indicate that super-Earth and Neptune-mass planets are more frequent than gas giants around such stars, in agreement with core accretion theory of planet formation. Using precise radia l velocities derived from visual and near-infrared spectra, we report the discovery of a giant planet with a minimum mass of 0.46 Jupiter masses in an eccentric 204-day orbit around the very low-mass star GJ 3512. Dynamical models show that the high eccentricity of the orbit is most likely explained from planet-planet interactions. The reported planetary system challenges current formation theories and puts stringent constraints on the accretion and migration rates of planet formation and evolution models, indicating that disc instability may be more efficient in forming planets than previously thought.
131 - Barbara Ercolano (1 2009
The formation of planets within a disc must operate within the time frame of disc dispersal, it is thus crucial to establish what is the dominant process that disperses the gaseous component of discs around young stars. Planet formation itself as wel l as photoevaporation by energetic radiation from the central young stellar object have been proposed as plausible dispersal mechanisms. [abridged]. In this paper we use the different metallicity dependance of X-ray photoevaporation and planet formation to discriminate between these two processes. We study the effects of metallicity, Z, on the dispersal timescale, t_phot, in the context of a photoevaporation model, by means of detailed thermal calculations of a disc in hydrostatic equilibrium irradiated by EUV and X-ray radiation from the central source. Our models show t_phot propto Z^0.52 for a pure photoevaporation model. By means of analytical estimates we derive instead a much stronger negative power dependance on metallicity of the disc lifetime for a dispersal model based on planet formation. A census of disc fractions in lower metallicity regions should therefore be able to distinguish between the two models. A recent study by Yasui et al. in low metallicity clusters of the extreme outer Galaxy ([O/H] ~- 0.7dex and dust to gas ratio of ~0.001) provides preliminary observational evidence for shorter disc lifetimes at lower metallicities, in agreement with the predictions of a pure photoevaporation model. [abridged] We finally develop an analytical framework to study the effects of metallicity dependent photoevaporation on the formation of gas giants in the core accretion scenario. We show that accounting for this effect strengthens the conclusion that planet formation is favoured at higher metallicity. [abridged]
Directly imaged planets are self-luminous companions of pre-main sequence and young main sequence stars. They reside in wider orbits ($sim10mathrm{s}-1000mathrm{s}$~AU) and generally are more massive compared to the close-in ($lesssim 10$~AU) planets . Determining the host star properties of these outstretched planetary systems is important to understand and discern various planet formation and evolution scenarios. We present the stellar parameters and metallicity ([Fe/H]) for a subsample of 18 stars known to host planets discovered by the direct imaging technique. We retrieved the high-resolution spectra for these stars from public archives and used the synthetic spectral fitting technique and Bayesian analysis to determine the stellar properties in a uniform and consistent way. For eight sources, the metallicities are reported for the first time, while the results are consistent with the previous estimates for the other sources. Our analysis shows that metallicities of stars hosting directly imaged planets are close to solar with a mean [Fe/H] = $-0.04pm0.27$~dex. The large scatter in metallicity suggests that a metal-rich environment may not be necessary to form massive planets at large orbital distances. We also find that the planet mass-host star metallicity relation for the directly imaged massive planets in wide-orbits is very similar to that found for the well studied population of short period ($lesssim 1$~yr) super-Jupiters and brown-dwarfs around main-sequence stars.
80 - Beibei Liu , Jianghui Ji 2020
The characterization of exoplanets and their birth protoplanetary disks has enormously advanced in the last decade. Benefitting from that, our global understanding of the planet formation processes has been substantially improved. In this review, we first summarize the cutting-edge states of the exoplanet and disk observations. We further present a comprehensive panoptic view of modern core accretion planet formation scenarios, including dust growth and radial drift, planetesimal formation by the streaming instability, core growth by planetesimal accretion and pebble accretion. We discuss the key concepts and physical processes in each growth stage and elaborate on the connections between theoretical studies and observational revelations. Finally, we point out the critical questions and future directions of planet formation studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا