ﻻ يوجد ملخص باللغة العربية
While it is widely accepted that planets are formed in protoplanetary disks, there is still much debate on when this process happens. In a few cases protoplanets have been directly imaged, but for the vast majority of systems, disk gaps and cavities -- seen especially in dust continuum observations -- have been the strongest evidence of recent or on-going planet formation. We present ALMA observations of a nearly edge-on ($i = 75^{circ}$) disk containing a giant gap seen in dust but not in $^{12}$CO gas. Inside the gap, the molecular gas has a warm (100 K) component coinciding in position with a tentative free-free emission excess observed with the VLA. Using 1D hydrodynamic models, we find the structure of the gap is consistent with being carved by a planet with 4-70 $M_{rm Jup}$. The coincidence of free-free emission inside the planet-carved gap points to the planet being very young and/or still accreting. In addition, the $^{12}$CO observations reveal low-velocity large scale filaments aligned with the disk major axis and velocity coherent with the disk gas that we interpret as ongoing gas infall from the local ISM. This system appears to be an interesting case where both a star (from the environment and the disk) and a planet (from the disk) are growing in tandem.
The goal of the Ariel space mission is to observe a large and diversified population of transiting planets around a range of host star types to collect information on their atmospheric composition. The planetary bulk and atmospheric compositions bear
Statistical analyses from exoplanet surveys around low-mass stars indicate that super-Earth and Neptune-mass planets are more frequent than gas giants around such stars, in agreement with core accretion theory of planet formation. Using precise radia
The formation of planets within a disc must operate within the time frame of disc dispersal, it is thus crucial to establish what is the dominant process that disperses the gaseous component of discs around young stars. Planet formation itself as wel
Directly imaged planets are self-luminous companions of pre-main sequence and young main sequence stars. They reside in wider orbits ($sim10mathrm{s}-1000mathrm{s}$~AU) and generally are more massive compared to the close-in ($lesssim 10$~AU) planets
The characterization of exoplanets and their birth protoplanetary disks has enormously advanced in the last decade. Benefitting from that, our global understanding of the planet formation processes has been substantially improved. In this review, we