ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a Boltzmann-type kinetic description of opinion formation on social networks, which takes into account a general connectivity distribution of the individuals. We consider opinion exchange processes inspired by the Sznajd model and related simplifications but we do not assume that individuals interact on a regular lattice. Instead, we describe the structure of the social network statistically, assuming that the number of contacts of a given individual determines the probability that their opinion reaches and influences the opinion of another individual. From the kinetic description of the system, we study the evolution of the mean opinion, whence we find precise analytical conditions under which phase transitions, i.e. changes of sign between the initial and the asymptotic mean opinions, occur. Furthermore, we show that a non-zero correlation between the initial opinions and the connectivity of the individuals is necessary to observe phase transitions. Finally, we validate our analytical results through Monte Carlo simulations of the stochastic opinion exchange processes on the social network.
We propose a minimal model for the collective dynamics of opinion formation in the society, by modifying kinetic exchange dynamics studied in the context of income, money or wealth distributions in a society. This model has an intriguing spontaneous symmetry breaking transition.
We propose a minimal multi-agent model for the collective dynamics of opinion formation in the society, by modifying kinetic exchange dynamics studied in the context of income, money or wealth distributions in a society. This model has an intriguing
We study the joint evolution of worldviews by proposing a model of opinion dynamics, which is inspired in notions from evolutionary ecology. Agents update their opinion on a specific issue based on their propensity to change -- asserted by the social
Social relationships characterize the interactions that occur within social species and may have an important impact on collective animal motion. Here, we consider a variation of the standard Vicsek model for collective motion in which interactions a
In this work, we investigate a heterogeneous population in the modified Hegselmann-Krause opinion model on complex networks. We introduce the Shannon information entropy about all relative opinion clusters to characterize the cluster profile in the f