ﻻ يوجد ملخص باللغة العربية
We analyze two consequences of the relationship between collinear factorization and $k_t$-factorization. First, we show that the $k_t$-factorization gives a fundamental justification for the choice of the hard scale $Q^2$ done in the collinear factorization. Second, we show that in the collinear factorization there is an uncertainty on this choice which will not be reduced by higher orders. This uncertainty is absent within the $k_t$-factorization formalism.
We examine some of the complications involved when combining (matching) TMD factorization with collinear factorization to allow accurate predictions over the whole range of measured transverse momentum in a process like Drell-Yan. Then we propose som
We discuss the inclusive production of jets in the central region of rapidity in the context of k_T-factorization at next-to-leading order (NLO). Calculations are performed in the Regge limit making use of the NLO BFKL results. We introduce a jet con
We compare the theoretical status and the numerical predictions of two approaches for heavy quark production in the high energy hadron collisions, namely the conventional LO parton model with collinear approximation and $k_T$-factorization approach.
Universality in QCD factorization of parton densities, fragmentation functions, and soft factors is endangered by the process dependence of the directions of Wilson lines in their definitions. We find a choice of directions that is consistent with fa
It has been pointed out that the recent BaBar data on the pi gamma^* -> gamma transition form factor F_{pi gamma}(Q^2) at low (high) momentum transfer squared Q^2 indicate an asymptotic (flat) pion distribution amplitude. These seemingly contradictor