ترغب بنشر مسار تعليمي؟ اضغط هنا

Pion transition form factor in k_T factorization

188   0   0.0 ( 0 )
 نشر من قبل Satoshi Mishima
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It has been pointed out that the recent BaBar data on the pi gamma^* -> gamma transition form factor F_{pi gamma}(Q^2) at low (high) momentum transfer squared Q^2 indicate an asymptotic (flat) pion distribution amplitude. These seemingly contradictory observations can be reconciled in the k_T factorization theorem: the increase of the measured Q^2F_{pi gamma}(Q^2) for Q^2 > 10 GeV^2 is explained by convoluting a k_T dependent hard kernel with a flat pion distribution amplitude, k_T being a parton transverse momentum. The low Q^2 data are accommodated by including the resummation of alpha_s ln^2x, x being a parton momentum fraction, which provides a stronger suppression at the endpoints of x. The next-to-leading-order correction to the pion transition form factor is found to be less than 20% in the considered range of Q^2.



قيم البحث

اقرأ أيضاً

242 - S. Noguera , V. Vento 2010
Recent BaBaR data on the pion transition form factor, whose Q^2 dependence is much steeper then predicted by asymptotic Quantum Chromodynamics (QCD), have caused a renewed interest in its theoretical description. We present here a formalism based on a model independent low energy description and a high energy description based on QCD, which match at a scale Q_0. The high energy description incorporates a flat pion distribution amplitude, phi(x)=1, at the matching scale Q_0 and QCD evolution from Q_0 to Q>Q_0. The flat pion distribution is connected, through soft pion theorems and chiral symmetry, to the pion valance parton distribution at the same low scale Q_0. The procedure leads to a good description of the data, and incorporating additional twist three effects, to an excellent description of the data.
The pion electromagnetic form factor and two-pion production in electron-positron collisions are simultaneously fitted by a vector dominance model evolving to perturbative QCD at large momentum transfer. This model was previously successful in simult aneously fitting the nucleon electromagnetic form factors (spacelike region) and the electromagnetic production of nucleon-antinucleon pairs (timelike region). For this pion case dispersion relations are used to produce the analytic connection of the spacelike and timelike regions. The fit to all the data is good, especially for the newer sets of time-like data. The description of high-$q^2$ data, in the time-like region, requires one more meson with $rho$ quantum numbers than listed in the 2014 Particle Data Group review.
229 - Yue-Long Shen , Zhi-Tian Zou , 2019
In this paper we calculate the power corrections to the pion transition form factor within the framework of perturbative QCD approach on the basis of $k_T$ factorization. The power suppressed contributions from higher twist pion wave functions and th e hadronic structure of photon are investigated. We find that there exists strong cancellation between the two kinds contributions, thus the total power corrections considered currently are very small, and the prediction of the leading power contribution with joint resummation improved perturbative QCD approach is almost unchanged. This result confirms that the pion transition form factor is a good platform to constrain the nonperturbative parameters in pion wave functions. Moreover, our result can accommodate the anomalous data from BaBar, or agrees with results from Belle according to the choice of Gegebauer moment in the pion wave function, and the more precise experimental data from Belle-II is expected.
We reconsider QCD factorization for the leading power contribution to the $gamma^{ast} gamma to pi^0$ form factor $F_{gamma^{ast} gamma to pi^0} (Q^2)$ at one loop using the evanescent operator approach, and demonstrate the equivalence of the resulti ng factorization formulae derived with distinct prescriptions of $gamma_5$ in dimensional regularization. Applying the light-cone QCD sum rules (LCSRs) with photon distribution amplitudes (DAs) we further compute the subleading power contribution to the pion-photon form factor induced by the hadronic component of the real photon at the next-to-leading-order in ${cal O}(alpha_s)$, with both naive dimensional regularization and t Hooft-Veltman schemes of $gamma_5$. Confronting our theoretical predictions of $F_{gamma^{ast} gamma to pi^0} (Q^2)$ with the experimental measurements from the BaBar and the Belle Collaborations implies that a reasonable agreement can be achieved without introducing an exotic end-point behaviour for the twist-2 pion DA.
363 - V.Anisovich , D.Melikhov , 1995
We consider the pion structure in the region of low and moderately high momentum transfers: at low $Q^2$, the pion is treated as a composite system of constituent quarks; at moderately high momentum transfers, $Q^2=10div25;GeV^2$, the pion ff is calc ulated within perturbative QCD taking into account one--gluon hard exchange. Using the data on pion ff at $Q^2<3;GeV^2$ and pion axial--vector decay constant, we reconstruct the pion wf in the soft and intermediate regions. This very wave function combined with one--gluon hard scattering amplitude allows a calculation of the pion ff in the hard region $Q^2=10div25;GeV^2$. A specific feature of the reconstructed pion wf is a quasi--zone character of the $qbar q$--excitations. On the basis of the obtained pion wf and the data on deep inelastic scattering off the pion, the valence quark distribution in a constituent quark is determined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا