ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle accretion onto planets in discs with hydrodynamic turbulence

67   0   0.0 ( 0 )
 نشر من قبل Giovanni Picogna
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The growth process of proto-planets can be sped-up by accreting a large number of solid, pebble-sized objects that are still present in the protoplanetary disc. It is still an open question on how efficient this process works in realistic turbulent discs. Here, we investigate the accretion of pebbles in turbulent discs that are driven by the purely hydrodynamical vertical shear instability (VSI). For this purpose, we perform global three-dimensional simulations of locally isothermal, VSI turbulent discs with embedded protoplanetary cores from 5 to 100 $M_oplus$ that are placed at 5.2 au distance from the star. In addition, we follow the evolution of a swarm of embedded pebbles of different size under the action of drag forces between gas and particles in this turbulent flow. Simultaneously, we perform a set of comparison simulations for laminar viscous discs where the particles experience stochastic kicks. For both cases, we measure the accretion rate onto the cores as a function of core mass and Stokes number ($tau_s$) of the particles and compare it to recent MRI turbulence simulations. Overall the dynamic is very similar for the particles in the VSI turbulent disc and the laminar case with stochastic kicks. For the small mass planets (i.e. 5 and 10 $M_oplus$), well-coupled particles with $tau_s = 1$, which have a size of about one meter at this location, we find an accretion efficiency (rate of particles accreted over drifting inward) of about 1.6-3%. For smaller and larger particles this efficiency is higher. However, the fast inward drift for $tau_s = 1$ particles makes them the most effective for rapid growth, leading to mass doubling times of about 20,000 yr. For masses between 10 and 30 $M_oplus$ the core reaches the pebble isolation mass and the particles are trapped at the pressure maximum just outside of the planet, shutting off further particle accretion.



قيم البحث

اقرأ أيضاً

115 - Min-Kai Lin 2019
Enhancing the local dust-to-gas ratio in protoplanetary discs is a necessary first step to planetesimal formation. In laminar discs, dust settling is an efficient mechanism to raise the dust-to-gas ratio at the disc midplane. However, turbulence, if present, can stir and lift dust particles, which ultimately hinders planetesimal formation. In this work, we study dust settling in protoplanetary discs with hydrodynamic turbulence sustained by the vertical shear instability. We perform axisymmetric numerical simulations to investigate the effect of turbulence, particle size, and solid abundance or metallicity on dust settling. We highlight the positive role of drag forces exerted onto the gas by the dust for settling to overcome the vertical shear instability. In typical disc models we find particles with a Stokes number $sim 10^{-3}$ can sediment to $lesssim 10%$ of the gas scale-height, provided that $Sigma_mathrm{d}/Sigma_mathrm{g}gtrsim 0.02$-$0.05$, where $Sigma_mathrm{d,g}$ are the surface densities in dust and gas, respectively. This coincides with the metallicity condition for small particles to undergo clumping via the streaming instability. Super-solar metallicities, at least locally, are thus required for a self-consistent picture of planetesimal formation. Our results also imply that dust rings observed in protoplanetary discs should have smaller scale-heights than dust gaps, provided that the metallicity contrast between rings and gaps exceed the corresponding contrast in gas density.
Recently, the vertical shear instability (VSI) has become an attractive purely hydrodynamic candidate for the anomalous angular momentum transport required for weakly ionized accretion disks. In direct three-dimensional numerical simulations of VSI t urbulence in disks, a meridional circulation pattern was observed that is opposite to the usual viscous flow behavior. Here, we investigate whether this feature can possibly be explained by an anisotropy of the VSI turbulence. Using three-dimensional hydrodynamical simulations, we calculate the turbulent Reynolds stresses relevant for angular momentum transport for a representative section of a disk. We find that the vertical stress is significantly stronger than the radial stress. Using our results in viscous disk simulations with different viscosity coefficients for the radial and vertical direction, we find good agreement with the VSI turbulence for the stresses and meridional flow; this provides additional evidence for the anisotropy. The results are important with respect to the transport of small embedded particles in disks.
Among the candidates for generating turbulence in accretion discs in situations with low intrinsic ionization the vertical shear instability (VSI) has become an interesting candidate, as it relies purely on a vertical gradient in the angular velocity . Existing simulations have shown that $alpha$-values a few times $10^{-4}$ can be generated. The particle growth in the early planet formation phase is determined by the dynamics of dust particles. Here, we address in particular the efficiency of VSI-turbulence in concentrating particles in order to generate overdensities and low collision velocities. We perform 3D numerical hydrodynamical simulations of accretion discs around young stars that include radiative transport and irradiation from the central star. The motion of particles within a size range of a fraction of mm up to several m is followed using standard drag formula. We confirm that under realistic conditions the VSI is able to generate turbulence in full 3D protoplanetary discs. The irradiated disc shows turbulence within 10 to 60au. The mean radial motion of the gas is such that it is directed inward near the midplane and outward in the surface layers. We find that large particles drift inward with the expected speed, while small particles can experience phases of outward drift. Additionally, the particles show bunching behaviour with overdensities reaching 5 times the average value, which is strongest for dimensionless stopping times around unity. Particles in a VSI-turbulent discs are concentrated in large scale turbulent eddies and show low relative speeds that allow for growing collisions. The reached overdensities will also allow for the onset streaming instabilities further enhancing particle growth. The outward drift for small particles at higher disk elevations allows for the transport of processed high temperature material in the Solar System to larger distances.
We study the three-dimensional evolution of a viscous protoplanetary disc which accretes gas material from a second protoplanetary disc during a close encounter in an embedded star cluster. The aim is to investigate the capability of the mass accreti on scenario to generate strongly inclined gaseous discs which could later form misaligned planets. We use smoothed particle hydrodynamics to study mass transfer and disc inclination for passing stars and circumstellar discs with different masses. We explore different orbital configurations to find the parameter space which allows significant disc inclination generation. citet{Thi2011} suggested that significant disc inclination and disc or planetary system shrinkage can generally be produced by the accretion of external gas material with a different angular momentum. We found that this condition can be fullfilled for a large range of gas mass and angular momentum. For all encounters, mass accretion from the secondary disc increases with decreasing mass of the secondary proto-star. Thus, higher disc inclinations can be attained for lower secondary stellar masses. Variations of the secondary discs orientation relative to the orbital plane can alter the disc evolution significantly. The results taken together show that mass accretion can change the three-dimensional disc orientation significantly resulting in strongly inclined discs. In combination with the gravitational interaction between the two star-disc systems, this scenario is relevant for explaining the formation of highly inclined discs which could later form misaligned planets.
102 - S.-J. Paardekooper 2006
We study the accretion of dust particles of various sizes onto embedded massive gas giant planets, where we take into account the structure of the gas disk due to the presence of the planet. The accretion rate of solids is important for the structure of giant planets: it determines the growth rate of the solid core that may be present as well as their final enrichment in solids. We use the RODEO hydrodynamics solver to solve the flow equations for the gas, together with a particle approach for the dust. The solver for the particles equations of motion is implicit with respect to the drag force, which allows us to treat the whole dust size spectrum. We find that dust accretion is limited to the smallest particle sizes. The largest particles get trapped in outer mean-motion resonances with the planet, while particles of intermediate size are pushed away from the orbit of the planet by the density structure in the gas disk. Only particles smaller than approximately s_max =10 micron may accrete on a planet with the mass of Jupiter. For a ten times less massive planet s_max=100 micron. The strongly reduced accretion of dust makes it very hard to enrich a newly formed giant planet in solids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا