ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic hydrodynamic turbulence in accretion disks

131   0   0.0 ( 0 )
 نشر من قبل Moritz H. R. Stoll
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, the vertical shear instability (VSI) has become an attractive purely hydrodynamic candidate for the anomalous angular momentum transport required for weakly ionized accretion disks. In direct three-dimensional numerical simulations of VSI turbulence in disks, a meridional circulation pattern was observed that is opposite to the usual viscous flow behavior. Here, we investigate whether this feature can possibly be explained by an anisotropy of the VSI turbulence. Using three-dimensional hydrodynamical simulations, we calculate the turbulent Reynolds stresses relevant for angular momentum transport for a representative section of a disk. We find that the vertical stress is significantly stronger than the radial stress. Using our results in viscous disk simulations with different viscosity coefficients for the radial and vertical direction, we find good agreement with the VSI turbulence for the stresses and meridional flow; this provides additional evidence for the anisotropy. The results are important with respect to the transport of small embedded particles in disks.



قيم البحث

اقرأ أيضاً

We present arcsecond-scale Submillimeter Array observations of the CO(3-2) line emission from the disks around the young stars HD 163296 and TW Hya at a spectral resolution of 44 m/s. These observations probe below the ~100 m/s turbulent linewidth in ferred from lower-resolution observations, and allow us to place constraints on the turbulent linewidth in the disk atmospheres. We reproduce the observed CO(3-2) emission using two physical models of disk structure: (1) a power-law temperature distribution with a tapered density distribution following a simple functional form for an evolving accretion disk, and (2) the radiative transfer models developed by DAlessio et al. that can reproduce the dust emission probed by the spectral energy distribution. Both types of models yield a low upper limit on the turbulent linewidth (Doppler b-parameter) in the TW Hya system (<40 m/s), and a tentative (3-sigma) detection of a ~300 m/s turbulent linewidth in the upper layers of the HD 163296 disk. These correspond to roughly <10% and 40% of the sound speed at size scales commensurate with the resolution of the data. The derived linewidths imply a turbulent viscosity coefficient, alpha, of order 0.01 and provide observational support for theoretical predictions of subsonic turbulence in protoplanetary accretion disks.
We present three-dimensional simulations of a protoplanetary disk subject to the effect of a nearby (0.3pc distant) supernova, using a time-dependent flow from a one dimensional numerical model of the supernova remnant (SNR), in addition to constant peak ram pressure simulations. Simulations are performed for a variety of disk masses and inclination angles. We find disk mass-loss rates that are typically 1e-7 to 1e-6 Msol/yr (but peak near 1e-5 Msol/yr during the instantaneous stripping phase) and are sustained for around 200 yr. Inclination angle has little effect on the mass loss unless the disk is close to edge-on. Inclined disks also strip asymmetrically with the trailing edge ablating more easily. Since the interaction lasts less than one outer rotation period, there is not enough time for the disk to restore its symmetry, leaving the disk asymmetrical after the flow has passed. Of the low-mass disks considered, only the edge-on disk is able to survive interaction with the SNR (with 50% of its initial mass remaining). At the end of the simulations, disks that survive contain fractional masses of SN material up to 5e-6. This is too low to explain the abundance of short-lived radionuclides in the early solar system, but a larger disk and the inclusion of radiative cooling might allow the disk to capture a higher fraction of SN material.
378 - E. I. Vorobyov 2020
The early evolution of protostellar disks with metallicities in the $Z=1.0-0.01~Z_odot$ range was studied with a particular emphasis on the strength of gravitational instability and the nature of protostellar accretion in low-metallicity systems. Num erical hydrodynamics simulations in the thin-disk limit were employed that feature separate gas and dust temperatures, and disk mass-loading from the infalling parental cloud cores. Models with cloud cores of similar initial mass and rotation pattern, but distinct metallicity were considered to distinguish the effect of metallicity from that of initial conditions. The early stages of disk evolution in low-metallicity models are characterized by vigorous gravitational instability and fragmentation. Disk instability is sustained by continual mass-loading from the collapsing core. The time period that is covered by this unstable stage is much shorter in the $Z=0.01~Z_odot$ models as compared to their higher metallicity counterparts thanks to the higher mass infall rates caused by higher gas temperatures (that decouple from lower dust temperatures) in the inner parts of collapsing cores. Protostellar accretion rates are highly variable in the low-metallicity models reflecting a highly dynamical nature of the corresponding protostellar disks. The low-metallicity systems feature short, but energetic episodes of mass accretion caused by infall of inward-migrating gaseous clumps that form via gravitational fragmentation of protostellar disks. These bursts seem to be more numerous and last longer in the $Z=0.1~Z_odot$ models in comparison to the $Z=0.01~Z_odot$ case. Variable protostellar accretion with episodic bursts is not a particular feature of solar metallicity disks. It is also inherent to gravitationally unstable disks with metallicities up to 100 times lower than solar.
Aims and Methods. Accretion bursts triggered by the magnetorotational instability (MRI) in the innermost disk regions were studied for protoplanetary gas-dust disks formed from prestellar cores of various mass $M_{rm core}$ and mass-to-magnetic flux ratio $lambda$. Numerical magnetohydrodynamics simulations in the thin-disk limit were employed to study the long-term ($sim 1.0$~Myr) evolution of protoplanetary disks with an adaptive turbulent $alpha$-parameter, which depends explicitly on the strength of the magnetic field and ionization fraction in the disk. The numerical models also feature the co-evolution of gas and dust, including the back-reaction of dust on gas and dust growth. Results. Dead zone with a low ionization fraction $x <= 10^{-13}$ and temperature on the order of several hundred Kelvin forms in the inner disk soon after its formation, extending from several to several tens of astronomical units depending on the model. The dead zone features pronounced dust rings that are formed due to the concentration of grown dust particles in the local pressure maxima. Thermal ionization of alkaline metals in the dead zone trigger the MRI and associated accretion burst, which is characterized by a sharp rise, small-scale variability in the active phase, and fast decline once the inner MRI-active region is depleted of matter. The burst occurrence frequency is highest in the initial stages of disk formation, and is driven by gravitational instability (GI), but declines with diminishing disk mass-loading from the infalling envelope. There is a causal link between the initial burst activity and the strength of GI in the disk fueled by mass infall from the envelope. Abridged.
The growth process of proto-planets can be sped-up by accreting a large number of solid, pebble-sized objects that are still present in the protoplanetary disc. It is still an open question on how efficient this process works in realistic turbulent d iscs. Here, we investigate the accretion of pebbles in turbulent discs that are driven by the purely hydrodynamical vertical shear instability (VSI). For this purpose, we perform global three-dimensional simulations of locally isothermal, VSI turbulent discs with embedded protoplanetary cores from 5 to 100 $M_oplus$ that are placed at 5.2 au distance from the star. In addition, we follow the evolution of a swarm of embedded pebbles of different size under the action of drag forces between gas and particles in this turbulent flow. Simultaneously, we perform a set of comparison simulations for laminar viscous discs where the particles experience stochastic kicks. For both cases, we measure the accretion rate onto the cores as a function of core mass and Stokes number ($tau_s$) of the particles and compare it to recent MRI turbulence simulations. Overall the dynamic is very similar for the particles in the VSI turbulent disc and the laminar case with stochastic kicks. For the small mass planets (i.e. 5 and 10 $M_oplus$), well-coupled particles with $tau_s = 1$, which have a size of about one meter at this location, we find an accretion efficiency (rate of particles accreted over drifting inward) of about 1.6-3%. For smaller and larger particles this efficiency is higher. However, the fast inward drift for $tau_s = 1$ particles makes them the most effective for rapid growth, leading to mass doubling times of about 20,000 yr. For masses between 10 and 30 $M_oplus$ the core reaches the pebble isolation mass and the particles are trapped at the pressure maximum just outside of the planet, shutting off further particle accretion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا