ﻻ يوجد ملخص باللغة العربية
Recent follow-up observations of the binary neutron star (NS) merging event GW170817/SGRB 170817A reveal that its X-ray/optical/radio emissions are brightening continuously up to $sim 100$ days post-merger. This late-time brightening is unexpected from the kilonova model or the off-axis top-hat jet model for gamma-ray burst afterglows. In this paper, by assuming that the merger remnant is a long-lived NS, we propose that the interaction between an electron-positron-pair ($e^+e^-$) wind from the central NS and the jet could produce a long-lived reverse shock, from which a new emission component would rise and can interpret current observations well. The magnetic-field-induced ellipticity of the NS is taken to be $4 times 10^{-5}$ in our modeling, so that the braking of the NS is mainly through the gravitational wave (GW) radiation rather than the magnetic dipole radiation, and the emission luminosity at early times would not exceed the observational limits. In our scenario, since the peak time of the brightening is roughly equal to the spin-down time scale of the NS, the accurate peak time may help constrain the ellipticity of the remnant NS. We suggest that radio polarization observations of the brightening would help to distinguish our scenario from other scenarios. Future observations on a large sample of short gamma-ray burst afterglows or detections of GW signals from merger remnants would test our scenario.
A relativistic electron-positron ($e^{+}e^{-}$) pair wind from a rapidly rotating, strongly magnetized neutron star (NS) would interact with a gamma-ray burst (GRB) external shock and reshapes afterglow emission signatures. Assuming that the merger r
The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10^12 electron Volts (eV) and are bright sourc
FR0s are compact radio sources that represent the bulk of the Radio-Loud (RL) AGN population, but they are still poorly understood. Pilot studies on these sources have been already performed at radio and optical wavelengths: here we present the first
We present new observations of the binary neutron star merger GW170817 at $Delta tapprox 220-290$ days post-merger, at radio (Karl G. Jansky Very Large Array; VLA), X-ray (Chandra X-ray Observatory) and optical (Hubble Space Telescope; HST) wavelengt
For the first time, a short gamma-ray burst (GRB) was unambiguously associated with a gravitational wave (GW) observation from a binary neutron star (NS) merger. This allows us to link the details of the central engine properties to GRB emission mode