ﻻ يوجد ملخص باللغة العربية
We present new observations of the binary neutron star merger GW170817 at $Delta tapprox 220-290$ days post-merger, at radio (Karl G. Jansky Very Large Array; VLA), X-ray (Chandra X-ray Observatory) and optical (Hubble Space Telescope; HST) wavelengths. These observations provide the first evidence for a turnover in the X-ray light curve, mirroring a decline in the radio emission at $gtrsim5sigma$ significance. The radio-to-X-ray spectral energy distribution exhibits no evolution into the declining phase. Our full multi-wavelength dataset is consistent with the predicted behavior of our previously published models of a successful structured jet expanding into a low-density circumbinary medium, but pure cocoon models with a choked jet cannot be ruled out. If future observations continue to track our predictions, we expect that the radio and X-ray emission will remain detectable until $sim 1000$ days post-merger.
The X-ray emission of gamma-ray bursts (GRBs) is often characterized by an initial steep decay, followed by a nearly constant emission phase (so called plateau) which can extend up to thousands of seconds. While the steep decay is usually interpreted
We present a revised and complete optical afterglow light curve of the binary neutron star merger GW170817, enabled by deep Hubble Space Telescope (HST) F606W observations at $approx!584$ days post-merger, which provide a robust optical template. The
X-ray flashes (XRFs) are a class of gamma-ray bursts (GRBs) with the peak energy of the time-integrated spectrum, Ep, below 30 keV, whereas classical GRBs have Ep of a few hundreds keV. Apart from Ep and the lower luminosity, the properties of XRFs a
Relativistic supernovae constitute a sub-class of type Ic supernovae (SNe). Their non-thermal, radio emission differs notably from that of regular type Ic supernovae as they have a fast expansion speed (with velocities $sim$ 0.6-0.8 c) which can not
Recently, a high-energy muon neutrino event was detected in association with a tidal disruption event (TDE) AT2019dsg at the time about 150 days after the peak of the optical/UV luminosity. We propose that such a association could be interpreted as a