ترغب بنشر مسار تعليمي؟ اضغط هنا

Interacting Dark Energy: Possible Explanation for 21-cm Absorption at Cosmic Dawn

82   0   0.0 ( 0 )
 نشر من قبل Andr\\'e Costa
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A recent observation points to an excess in the expected 21-cm brightness temperature from cosmic dawn. In this paper, we present an alternative explanation of this phenomenon, an interaction in the dark sector. Interacting dark energy models have been extensively studied recently and there is a whole variety of such in the literature. Here we particularize to a specific model in order to make explicit the effect of an interaction.



قيم البحث

اقرأ أيضاً

99 - Ming Zhang , Bo Wang , Peng-Ju Wu 2021
We forecast constraints on cosmological parameters in the interacting dark energy models using the mock data generated for neutral hydrogen intensity mapping (IM) experiments. In this work, we only consider the interacting dark energy models with ene rgy transfer rate $Q=beta Hrho_{rm c}$, and take BINGO, FAST, SKA1-MID, and Tianlai as typical examples of the 21 cm IM experiments. We find that the Tianlai cylinder array will play an important role in constraining the interacting dark energy model. Assuming perfect foreground removal and calibration, and using the Tianlai-alone data, we obtain $sigma(H_0)=0.19$ km s$^{-1}$ Mpc$^{-1}$, $sigma(Omega_{rm m})=0.0033$ and $sigma(sigma_8)=0.0033$ in the I$Lambda$CDM model, which are much better than the results of Planck+optical BAO (i.e. optical galaxy surveys). However, the Tianlai-alone data cannot provide a very tight constraint on the coupling parameter $beta$ compared with Planck+optical BAO, while the Planck+Tianlai data can give a rather tight constraint of $sigma(beta)=0.00023$ due to the parameter degeneracies being well broken by the data combination. In the I$w$CDM model, we obtain $sigma(beta)=0.00079$ and $sigma(w)=0.013$ from Planck+Tianlai. In addition, we also make a detailed comparison among BINGO, FAST, SKA1-MID, and Tianlai in constraining the interacting dark energy models. We show that future 21 cm IM experiments will provide a useful tool for exploring the nature of dark energy and play a significant role in measuring the coupling between dark energy and dark matter.
Neutral hydrogen (HI) intensity mapping is a promising technique to probe the large-scale structure of the Universe, improving our understanding on the late-time accelerated expansion. In this work, we first scrutinize how an alternative cosmology, i nteracting Dark Energy, can affect the 21-cm angular power spectrum relative to the concordance $Lambda$CDM model. We re-derive the 21-cm brightness temperature fluctuation in the context of such interaction and uncover an extra new contribution. Then we estimate the noise level of three upcoming HI intensity mapping surveys, BINGO, SKA1-MID Band$,$1 and Band$,$2, respectively, and employ a Fisher matrix approach to forecast their constraints on the interacting Dark Energy model. We find that while $textit{Planck},$ 2018 maintains its dominion over early-Universe parameter constraints, BINGO and SKA1-MID Band$,$2 put complementary bounding to the latest CMB measurements on dark energy equation of state $w$, the interacting strength $lambda_i$ and the reduced Hubble constant $h$, and SKA1-MID Band$,$1 even outperforms $textit{Planck},$ 2018 in these late-Universe parameter constraints. The expected minimum uncertainties are given by SKA1-MID Band$,$1+$textit{Planck},$: $sim 0.35%$ on $w$, $sim 0.27%$ on $h$, $sim 0.61%$ on HI bias $b_{rm HI}$, and an absolute uncertainty of about $3times10^{-4}$ ($7times10^{-4}$) on $lambda_{1}$ ($lambda_{2}$). Moreover, we quantify the effect of increasing redshift bins and inclusion of redshift-space distortions in updating the constraints. Our results indicate a bright prospect for HI intensity mapping surveys in constraining interacting Dark Energy, whether on their own or further by a joint analysis with other measurements.
The recent detection of an anomalously strong 21-cm signal of neutral hydrogen from Cosmic Dawn by the EDGES Low-Band radio experiment can be explained if cold dark matter particles scattered off the baryons draining excess energy from the gas. In th is Letter we explore the expanded range of the 21-cm signal that is opened up by this interaction, varying the astrophysical parameters as well as the properties of dark matter particles in the widest possible range. We identify models consistent with current data by comparing to both the detection in the Low-Band and the upper limits from the EDGES High-Band antenna. We find that consistent models predict a 21-cm fluctuation during Cosmic Dawn that is between 3 and 30 times larger than the largest previously expected without dark matter scattering. The expected power spectrum exhibits strong Baryon Acoustic Oscillations imprinted by the velocity-dependent cross-section. The latter signature is a smoking gun of the velocity-dependent scattering and could be used by interferometers to verify the dark matter explanation of the EDGES detection.
We estimate the 21 cm Radio Background from accretion onto the first intermediate-mass Black Holes between $zapprox 30$ and $zapprox 16$. Combining potentially optimistic, but plausible, scenarios for black hole formation and growth with empirical co rrelations between luminosity and radio-emission observed in low-redshift active galactic nuclei, we find that a model of black holes forming in molecular cooling halos is able to produce a 21 cm background that exceeds the Cosmic Microwave Background (CMB) at $z approx 17$ though models involving larger halo masses are not entirely excluded. Such a background could explain the surprisingly large amplitude of the 21 cm absorption feature recently reported by the EDGES collaboration. Such black holes would also produce significant X-ray emission and contribute to the $0.5-2$ keV soft X-ray background at the level of $approx 10^{-13}-10^{-12}$ erg sec$^{-1}$ cm$^{-2}$ deg$^{-2}$, consistent with existing constraints. In order to avoid heating the IGM over the EDGES trough, these black holes would need to be obscured by Hydrogen column depths of $ N_text{H} sim 5 times 10^{23} text{cm}^{-2}$. Such black holes would avoid violating contraints on the CMB optical depth from Planck if their UV photon escape fractions were below $f_{text{esc}} lesssim 0.1$, which would be a natural result of $N_text{H} sim 5 times 10^{23} text{cm}^{-2}$ imposed by an unheated IGM.
The 21-cm signal of neutral hydrogen is a sensitive probe of the Epoch of Reionization (EoR) and Cosmic Dawn. Currently operating radio telescopes have ushered in a data-driven era of 21-cm cosmology, providing the first constraints on the astrophysi cal properties of sources that drive this signal. However, extracting astrophysical information from the data is highly non-trivial and requires the rapid generation of theoretical templates over a wide range of astrophysical parameters. To this end emulators are often employed, with previous efforts focused on predicting the power spectrum. In this work we introduce 21cmGEM - the first emulator of the global 21-cm signal from Cosmic Dawn and the EoR. The smoothness of the output signal is guaranteed by design. We train neural networks to predict the cosmological signal using a database of ~30,000 simulated signals which were created by varying seven astrophysical parameters: the star formation efficiency and the minimal mass of star-forming halos; the efficiency of the first X-ray sources and their spectrum parameterized by spectral index and the low energy cutoff; the mean free path of ionizing photons and the CMB optical depth. We test the performance with a set of ~2,000 simulated signals, showing that the relative error in the prediction has an r.m.s. of 0.0159. The algorithm is efficient, with a running time per parameter set of 0.16 sec. Finally, we use the database of models to check the robustness of relations between the features of the global signal and the astrophysical parameters that we previously reported.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا