ترغب بنشر مسار تعليمي؟ اضغط هنا

Emulating the Global 21-cm Signal from Cosmic Dawn and Reionization

146   0   0.0 ( 0 )
 نشر من قبل Anastasia Fialkov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The 21-cm signal of neutral hydrogen is a sensitive probe of the Epoch of Reionization (EoR) and Cosmic Dawn. Currently operating radio telescopes have ushered in a data-driven era of 21-cm cosmology, providing the first constraints on the astrophysical properties of sources that drive this signal. However, extracting astrophysical information from the data is highly non-trivial and requires the rapid generation of theoretical templates over a wide range of astrophysical parameters. To this end emulators are often employed, with previous efforts focused on predicting the power spectrum. In this work we introduce 21cmGEM - the first emulator of the global 21-cm signal from Cosmic Dawn and the EoR. The smoothness of the output signal is guaranteed by design. We train neural networks to predict the cosmological signal using a database of ~30,000 simulated signals which were created by varying seven astrophysical parameters: the star formation efficiency and the minimal mass of star-forming halos; the efficiency of the first X-ray sources and their spectrum parameterized by spectral index and the low energy cutoff; the mean free path of ionizing photons and the CMB optical depth. We test the performance with a set of ~2,000 simulated signals, showing that the relative error in the prediction has an r.m.s. of 0.0159. The algorithm is efficient, with a running time per parameter set of 0.16 sec. Finally, we use the database of models to check the robustness of relations between the features of the global signal and the astrophysical parameters that we previously reported.



قيم البحث

اقرأ أيضاً

Studying the cosmic dawn and the epoch of reionization through the redshifted 21 cm line are among the major science goals of the SKA1. Their significance lies in the fact that they are closely related to the very first stars in the universe. Interpr eting the upcoming data would require detailed modelling of the relevant physical processes. In this article, we focus on the theoretical models of reionization that have been worked out by various groups working in India with the upcoming SKA in mind. These models include purely analytical and semi-numerical calculations as well as fully numerical radiative transfer simulations. The predictions of the 21 cm signal from these models would be useful in constraining the properties of the early galaxies using the SKA data.
Emulation of the Global (sky-averaged) 21-cm signal from the Cosmic Dawn and Epoch of Reionization with neural networks has been shown to be an essential tool for physical signal modelling. In this paper we present globalemu, a Global 21-cm signal em ulator that uses redshift as a character defining variable along side a set of astrophysical parameters to estimate the brightness temperature of the 21-cm signal. Combined with a physically motivated pre-processing of the data this makes for a reliable and fast emulator that is relatively insensitive to the neural network design. A single high resolution signal can be emulated in 1.3 ms when using globalemu in comparison to 133 ms, a factor of 102 improvement, when using the existing public state of the art emulator 21cmGEM evaluated with the same computing power. We illustrate, with the same training and test data used for 21cmGEM, that globalemu is almost twice as accurate as 21cmGEM and for 95% of models in a test set of $approx1,700$ we can achieve a RMSE of $leq 5.37$ mK and a mean RMSE of 2.52 mK across the band z = 7 -28 (approximately 10% the expected noise of 25 mK for the Radio Experiment for the Analysis of Cosmic Hydrogen (REACH)). Further, globalemu provides a flexible framework in which the neutral fraction history and Global signal models with updated astrophysics can be emulated easily. The emulator is pip installable and available at: https://github.com/htjb/globalemu. globalemu will be used by the REACH collaboration to perform physical signal modelling inside a Bayesian nested sampling loop.
The upcoming radio interferometer Square Kilometre Array (SKA) is expected to directly detect the redshifted 21-cm signal from the neutral hydrogen present during the Cosmic Dawn. Temperature fluctuations from X-ray heating of the neutral intergalact ic medium can dominate the fluctuations in the 21-cm signal from this time. This heating depends on the abundance, clustering, and properties of the X-ray sources present, which remain highly uncertain. We present a suite of three new large-volume, 349,Mpc a side, fully numerical radiative transfer simulations including QSO-like sources, extending the work previously presented in Ross et al. (2017). The results show that our QSOs have a modest contribution to the heating budget, yet significantly impact the 21-cm signal. Initially, the power spectrum is boosted on large scales by heating from the biased QSO-like sources, before decreasing on all scales. Fluctuations from images of the 21-cm signal with resolutions corresponding to SKA1-Low at the appropriate redshifts are well above the expected noise for deep integrations, indicating that imaging could be feasible for all the X-ray source models considered. The most notable contribution of the QSOs is a dramatic increase in non-Gaussianity of the signal, as measured by the skewness and kurtosis of the 21-cm probability distribution functions. However, in the case of late Lyman-$alpha$ saturation, this non-Gaussianity could be dramatically decreased particularly when heating occurs earlier. We conclude that increased non-Gaussianity is a promising signature of rare X-ray sources at this time, provided that Lyman-$alpha$ saturation occurs before heating dominates the 21-cm signal.
We present an analytic formalism to compute the fluctuating component of the ion{H}{1} signal and extend it to take into account the effects of partial Lyman-$alpha$ coupling during the era of cosmic dawn. We use excursion set formalism to calculate the size distribution of randomly distributed self-ionized regions. These ionization bubbles are surrounded by partially heated and Lyman-$alpha$ coupled regions, which create spin temperature $T_S$ fluctuations. We use the ratio of number of Lyman-$alpha$ to ionizing photon ($f_L$) and number of X-ray photons emitted per stellar baryons ($N_{rm heat}$) as modeling parameters. Using our formalism, we compute the global ion{H}{1} signal, its auto-correlation and power spectrum in the redshift range $10 le z le 30$ for the $Lambda$CDM model. We check the validity of this formalism for various limits and simplified cases. Our results agree reasonably well with existing results from N-body simulations, in spite of following a different approach and requiring orders of magnitude less computation power and time. We further apply our formalism to study the fluctuating component corresponding to the recent EDGES observation that shows an unexpectedly deep absorption trough in global ion{H}{1} signal in the redshift range $15 <z< 19$. We show that, generically, the EDGES observation predicts larger signal in this redshift range but smaller signal at higher redshifts. We also explore the possibility of negative real-space auto-correlation of spin temperature and show it can be achieved for partial Lyman-$alpha$ coupling in many cases corresponding to simplified models and complete model without density perturbations.
The properties of the first galaxies, expected to drive the Cosmic Dawn (CD) and the Epoch of Reionization (EoR), are encoded in the 3D structure of the cosmic 21-cm signal. Parameter inference from upcoming 21-cm observations promises to revolutioni ze our understanding of these unseen galaxies. However, prior inference was done using models with several simplifying assumptions. Here we introduce a flexible, physically-motivated parametrization for high-$z$ galaxy properties, implementing it in the public code 21cmFAST. In particular, we allow their star formation rates and ionizing escape fraction to scale with the masses of their host dark matter halos, and directly compute inhomogeneous, sub-grid recombinations in the intergalactic medium. Combining current Hubble observations of the rest-frame UV luminosity function (UV LFs) at high-$z$ with a mock 1000h 21-cm observation using the Hydrogen Epoch of Reionization Arrays (HERA), we constrain the parameters of our model using a Monte Carlo Markov Chain sampler of 3D simulations, 21CMMC. We show that the amplitude and scaling of the stellar mass with halo mass is strongly constrained by LF observations, while the remaining galaxy properties are constrained mainly by 21-cm observations. The two data sets compliment each other quite well, mitigating degeneracies intrinsic to each observation. All eight of our astrophysical parameters are able to be constrained at the level of $sim 10%$ or better. The updat
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا