ﻻ يوجد ملخص باللغة العربية
The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft.
High-velocity microparticle impacts are relevant to many fields from space exploration to additive manufacturing and can be used to help understand the physical and chemical behaviors of materials under extreme dynamic conditions. Recent advances in
A predictive model for the evolution of porous Ge layer upon thermal treatment is reported. We represent an idealized etched dislocation core as an axially symmetric elongated hole and computed its dynamics during annealing. Numerical simulations of
In this work, vertical tunnel field-effect transistors (v-TFETs) based on vertically stacked heretojunctions from 2D transition metal dichalcogenide (TMD) materials are studied by atomistic quantum transport simulations. The switching mechanism of v-
We report on the superlubric sliding of monolayer tungsten disulfide (WS2) on epitaxial graphene (EG) on silicon carbide (SiC). WS2 single-crystalline flakes with lateral size of hundreds of nanometers are obtained via chemical vapor deposition (CVD)
We report our results on the adsorption of noble gases such as argon, krypton and xenon on a graphene sheet, using Grand Canonical Monte Carlo (GCMC) simulations. We calculated the two-dimensional gas-liquid critical temperature for each adsorbate, r