ترغب بنشر مسار تعليمي؟ اضغط هنا

Monolayer Adsorption of Noble Gases on Graphene

369   0   0.0 ( 0 )
 نشر من قبل Silvina Gatica Dr
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report our results on the adsorption of noble gases such as argon, krypton and xenon on a graphene sheet, using Grand Canonical Monte Carlo (GCMC) simulations. We calculated the two-dimensional gas-liquid critical temperature for each adsorbate, resulting in fair agreement with theoretical predictions and experimental values of gases on graphite. We determined the different phases of the monolayers and constructed the phase diagrams. We found two-dimensional incommensurate solid phases for krypton, argon and xenon, and a two-dimensional commensurate solid phase for krypton.



قيم البحث

اقرأ أيضاً

Hydrogen adsorption on graphene can be increased by functionalization with Ti. This requires dispersing Ti islands on graphene as small and dense as possible, in order to increase the number of hydrogen adsorption sites per Ti atom. In this report, w e investigate the morphology of Ti on nanocrystalline graphene and its hydrogen adsorption by scanning tunneling microscopy and thermal desorption spectroscopy, and compare the results with equivalent measurements on single-crystalline graphene. Nanocrystalline graphene consists of extremely small crystal grains of < 5 nm size. Ti atoms preferentially adsorb at the grain boundaries of nanocrystalline graphene and form smaller and denser islands compared to single-crystalline graphene. Surprisingly, however, hydrogen adsorbs less to Ti on nanocrystalline graphene than to Ti on single-crystalline graphene. In particular, hydrogen hardly chemisorbs to 1 ML of Ti on nanocrystalline graphene. This may be attributed to strong bonds between Ti and defects located along the grain boundaries in nanocrystalline graphene. This mechanism might apply to other metals, as well, and therefore our results suggest that when functionalizing graphene by metal atoms for the purpose of hydrogen storage or other chemical reactions, it is important to consider not only the morphology of the resulting surface, but also the influence of graphene on the electronic states of the metal.
240 - Elsebeth Schroder 2013
The adsorption energies and orientation of methanol on graphene are determined from first-principles density functional calculations. We employ the well-tested vdW-DF method that seamlessly includes dispersion interactions with all of the more close- ranged interactions that result in bonds like the covalent and hydrogen bonds. The adsorption of a single methanol molecule and small methanol clusters on graphene are studied at various coverages. Adsorption in clusters or at high coverages (less than a monolayer) is found to be preferable, with the methanol C-O axis approximately parallel to the plane of graphene. The adsorption energies calculated with vdW-DF are compared with previous DFT-D and MP2-based calculations for single methanol adsorption on flakes of graphene (polycyclic aromatic hydrocarbons). For the high coverage adsorption energies we also find reasonably good agreement with previous desorption measurements.
In this paper, we investigate the adsorption of water monomer on fluorinated graphene using state-of-the-art first principles methods within the framework of density functional theory (DFT). Four different methods are employed to describe the interac tions between water and the carbon surface: The traditional DFT calculations within the generalized gradient approximation (GGA), and three types of calculations using respectively the semi-empirical DFT-D2method, the original van der Waals density functional (vdW-DF) method, and one of its variants. Compared with the adsorption on pristine graphene, the adsorption energies of water on fluorinated graphene are significantly increased, and the orientations of water diploe moment are notably changed. The most stable configuration is found to stay right above the top site of the C atom which is bonded with F, and the dipole moment of water molecule aligns spontaneously along the surface normal.
219 - Hasan Sahin , Salim Ciraci 2012
We perform first-principles structure optimization, phonon frequency and finite temperature molecular dynamics calculations based on density functional theory to study the interaction of chlorine atoms with graphene predicting the existence of possib le chlorinated graphene derivatives. The bonding of a single chlorine atom is ionic through the transfer of charge from graphene to chlorine adatom and induces negligible local distortion in the underlying planar graphene. Different from hydrogen and fluorine adatoms, the migration of a single chlorine adatom on the surface of perfect graphene takes place almost without barrier. However, the decoration of one surface of graphene with Cl adatoms leading to various conformations cannot sustain due to strong Cl-Cl interaction resulting in the desorption through the formation of Cl$_2$ molecules. On the contrary, the fully chlorinated graphene, chlorographene CCl, where single chlorine atoms are bonded alternatingly to each carbon atom from different sides of graphene with $sp^3$-type covalent bonds, is buckled. We found that this structure is stable and is a direct band gap semiconductor, whose band gap can be tuned by applied uniform strain. Calculated phonon dispersion relation and four Raman-active modes of chlorographene are discussed.
The adsorption and diffusion of F2 molecules on pristine graphene have been studied using first-principles calculations. For the diffusion of F2 from molecular state in gas phase to the dissociative adsorption state on graphene surface, a kinetic bar rier is identified, which explains the inertness of graphene in molecular F2 at room temperature, and its reactivity with F2 at higher temperatures. Studies on the diffusion of F2 molecules on graphene surface determine the energy barriers along the optimal diffusion pathways, which help to understand the high stability of fluorographene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا