ﻻ يوجد ملخص باللغة العربية
[Abridged] Protoplanetary disks have been studied extensively, both physically and chemically, to understand the environment in which planets form. However, the first steps of planet formation are likely to occur already when the protostar and disk are still embedded in their natal envelope. The initial conditions for planet formation may thus be provided by these young embedded disks, of which the physical and chemical structure is poorly characterized. We aim to constrain the midplane temperature structure, one of the critical unknowns, of the embedded disk around L1527. In particular, we set out to determine whether there is an extended cold outer region where CO is frozen out, as is the case for Class II disks. We use archival ALMA data to directly observe the midplane of the near edge-on L1527 disk. Optically thick $^{13}$CO ($J=2-1$) and C$^{18}$O ($J=2-1$) emission is observed throughout the disk and inner envelope, while N$_2$D$^+ (J=3-2$), which can only be abundant when CO is frozen out, is not detected. Both CO isotopologues have brightness temperatures $gtrsim$ 25 K along the midplane. Disk and envelope emission can be disentangled kinematically, because the largest velocities are reached in the disk. A power law radial temperature profile constructed using the highest midplane temperature at these velocities suggest that the temperature is above 20 K out to at least 75 AU, and possibly throughout the entire 125 AU disk. Radiative transfer models show that a model without CO freeze-out in the disk matches the C$^{18}$O observations better than a model with the CO snowline at $sim$70 AU. In addition, there is no evidence for a large (order of magnitude) depletion of CO. The disk around L1527 is likely to be warm enough to have CO present in the gas phase throughout the disk, suggesting that young embedded disks can indeed be warmer than the more evolved Class II disks.
Planets form in disks around young stars. The planet formation process may start when the protostar and disk are still deeply embedded within their infalling envelope. However, unlike more evolved protoplanetary disks, the physical and chemical struc
Deep and wide-field optical photometric observations along with multiwavelength archival datasets have been employed to study the physical properties of the cluster NGC 6910. The study also examines the impact of massive stars to their environment. T
The chemical composition of gas and ice in disks around young stars set the bulk composition of planets. In contrast to protoplanetary disks (Class II), young disks that are still embedded in their natal envelope (Class 0 and I) are predicted to be t
Sub-millimeter spectral line and continuum emission from the protoplanetary disks and envelopes of protostars are powerful probes of their structure, chemistry, and dynamics. Here we present a benchmark study of our modeling code, RadChemT, that for
We used ALMA to observe the star-forming region GGD27 at 1.14 mm with an unprecedented angular resolution, 40 mas (56 au) and sensitivity (0.002 Msun). We detected a cluster of 25 continuum sources, most of which are likely tracing disks around Class