ﻻ يوجد ملخص باللغة العربية
Planets form in disks around young stars. The planet formation process may start when the protostar and disk are still deeply embedded within their infalling envelope. However, unlike more evolved protoplanetary disks, the physical and chemical structure of these young embedded disks are still poorly constrained. We have analyzed ALMA data for $^{13}$CO, C$^{18}$O and N$_2$D$^+$ to constrain the temperature structure, one of the critical unknowns, in the disk around L1527. The spatial distribution of $^{13}$CO and C$^{18}$O, together with the kinetic temperature derived from the optically thick $^{13}$CO emission and the non-detection of N$_2$D$^+$, suggest that this disk is warm enough ($gtrsim$ 20 K) to prevent CO freeze-out.
[Abridged] Protoplanetary disks have been studied extensively, both physically and chemically, to understand the environment in which planets form. However, the first steps of planet formation are likely to occur already when the protostar and disk a
Sub-millimeter spectral line and continuum emission from the protoplanetary disks and envelopes of protostars are powerful probes of their structure, chemistry, and dynamics. Here we present a benchmark study of our modeling code, RadChemT, that for
Deep and wide-field optical photometric observations along with multiwavelength archival datasets have been employed to study the physical properties of the cluster NGC 6910. The study also examines the impact of massive stars to their environment. T
We present high-resolution sub/millimeter interferometric imaging of the Class 0 protostar L1527 IRS (IRAS 04368+2557) at 870 micron and 3.4 mm from the Submillimeter Array (SMA) and Combined Array for Research in Millimeter Astronomy (CARMA). We det
This chapter presents a review on the latest advances in the computation of physical conditions and chemical abundances of elements present in photoionized gas H II regions and planetary nebulae). The arrival of highly sensitive spectrographs attache