ترغب بنشر مسار تعليمي؟ اضغط هنا

SPH simulations of the induced gravitational collapse scenario of long gamma-ray bursts associated with supernovae

75   0   0.0 ( 0 )
 نشر من قبل Jorge A. Rueda
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first three-dimensional (3D) smoothed-particle-hydrodynamics (SPH) simulations of the induced gravitational collapse (IGC) scenario of long-duration gamma-ray bursts (GRBs) associated with supernovae (SNe). We simulate the SN explosion of a carbon-oxygen core (CO$_{rm core}$) forming a binary system with a neutron star (NS) companion. We follow the evolution of the SN ejecta, including their morphological structure, subjected to the gravitational field of both the new NS ($ u$NS) formed at the center of the SN, and the one of the NS companion. We compute the accretion rate of the SN ejecta onto the NS companion as well as onto the $ u$NS from SN matter fallback. We determine the fate of the binary system for a wide parameter space including different CO$_{rm core}$ and NS companion masses, orbital periods and SN explosion geometry and energies. We identify, for selected NS nuclear equations-of-state, the binary parameters leading the NS companion, by hypercritical accretion, either to the mass-shedding limit, or to the secular axisymmetric instability for gravitational collapse to a black hole (BH), or to a more massive, fast rotating, stable NS. We also assess whether the binary remains or not gravitationally bound after the SN explosion, hence exploring the space of binary and SN explosion parameters leading to $ u$NS-NS and $ u$NS-BH binaries. The consequences of our results for the modeling of long GRBs, i.e. X-ray flashes and binary-driven hypernovae, are discussed.



قيم البحث

اقرأ أيضاً

179 - David Bersier 2012
The connection between long GRBs and supernovae is now well established. I briefly review the evidence in favor of this connection and summarise where we are observationally. I also use a few events to exemplify what should be done and what type of d ata are needed. I also look at what we can learn from looking at SNe not associated with GRBs and see how GRBs fit into the broad picture of stellar explosions.
Long gamma-ray bursts (GRBs) have been linked to extreme core-collapse supernovae from massive stars. Gravitational waves (GW) offer a probe of the physics behind long GRBs. We investigate models of long-lived (~10-1000s) GW emission associated with the accretion disk of a collapsed star or with its protoneutron star remnant. Using data from LIGOs fifth science run, and GRB triggers from the swift experiment, we perform a search for unmodeled long-lived GW transients. Finding no evidence of GW emission, we place 90% confidence level upper limits on the GW fluence at Earth from long GRBs for three waveforms inspired by a model of GWs from accretion disk instabilities. These limits range from F<3.5 ergs cm^-2 to $F<1200 ergs cm^-2, depending on the GRB and on the model, allowing us to probe optimistic scenarios of GW production out to distances as far as ~33 Mpc. Advanced detectors are expected to achieve strain sensitivities 10x better than initial LIGO, potentially allowing us to probe the engines of the nearest long GRBs.
We present the results of a search for gravitational waves associated with 223 gamma-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGOs fifth and sixth science runs and Virgos first, second and third science runs . The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational-wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational-wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational-wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational-wave data is available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational-wave emission energy of $10^{-2}M_{odot}c^2$ at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational-wave detectors, and a resulting examination of prospects for the advanced gravitational-wave detectors.
It is now accepted that long duration gamma-ray bursts (GRBs) are produced during the collapse of a massive star. The standard collapsar model predicts that a broad-lined and luminous Type Ic core-collapse supernova (SN) accompanies every long-durati on GRB. This association has been confirmed in observations of several nearby GRBs. Here we present observations of two nearby long-duration GRBs that challenge this simple view. In the GRBs 060505 and 060614 we demonstrate that no SN emission accompanied these long-duration bursts, down to limits hundreds of times fainter than the archetypal SN 1998bw that accompanied GRB 980425, and fainter than any Type Ic SN ever observed. Multi-band observations of the early afterglows, as well as spectroscopy of the host galaxies, exclude the possibility of significant dust obscuration and show that the bursts originated in star-forming regions. The absence of a SN to such deep limits is qualitatively different from all previous nearby long GRBs and suggests a new phenomenological type of massive stellar death. From the supplementary material: Now we have observed SN-less GRBs in star-forming regions, suggesting that a non-detection of a SN does not preclude a massive progenitor. The position of the GRB, i.e. in a star-forming region or in an older component, may be the only way to discriminate between merging compact objects and massive stars as progenitors. In fact, several host galaxies for short GRBs have been found to be as actively star-forming as some host galaxies of long-duration GRBs. The GRB labels long and short have become synonymous with massive stars and other progenitors. These distinctions may need to be relaxed.
We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 9 8 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of $<9.38 times 10^{-6}$ (modeled) and $3.1 times 10^{-4}$ (unmodeled). We do not find any significant evidence for gravitational-wave signals associated with the other gamma-ray bursts analyzed, and therefore we report lower bounds on the distance to each of these, assuming various source types and signal morphologies. Using our final modeled search results, short gamma-ray burst observations, and assuming binary neutron star progenitors, we place bounds on the rate of short gamma-ray bursts as a function of redshift for $z leq 1$. We estimate 0.07-1.80 joint detections with Fermi-GBM per year for the 2019-20 LIGO-Virgo observing run and 0.15-3.90 per year when current gravitational-wave detectors are operating at their design sensitivities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا