ﻻ يوجد ملخص باللغة العربية
This paper focuses on wireless energy transfer (WET) to a pair of low complex energy receivers (ER), by only utilizing received signal strength indicator (RSSI) values that are fed back from the ERs to the energy transmitter (ET). Selecting the beamformer that maximizes the total average energy transfer between the ET and the ERs, while satisfying a minimum harvested energy criterion at each ER, is studied. This is a nonconvex constrained optimization problem which is difficult to solve analytically. Also, any analytical solution to the problem should only consists of parameters that the ET knows, or the ET can estimate, as utilizing only RSSI feedback values for channel estimation prohibits estimating some channel parameters. Thus, the paper focuses on obtaining a suboptimal solution analytically. It is proven that if the channels between the ET and the ERs satisfy a certain sufficient condition, this solution is in fact optimal. Simulations show that the optimality gap is negligibly small as well. Insights into a system with more than two ERs are also presented. To this end, it is highlighted that if the number of ERs is large enough, it is possible to always find a pair of ERs satisfying the sufficient condition, and hence, a pairwise scheduling policy that does not violate optimality can be used for the WET.
Achieving long battery lives or even self sustainability has been a long standing challenge for designing mobile devices. This paper presents a novel solution that seamlessly integrates two technologies, mobile cloud computing and microwave power tra
We consider a full-duplex decode-and-forward system, where the wirelessly powered relay employs the time-switching protocol to receive power from the source and then transmit information to the destination. It is assumed that the relay node is equipp
We analyze a cooperative wireless communication system with finite block length and finite battery energy, under quasi-static Rayleigh fading. Source and relay nodes are powered by a wireless energy transfer (WET) process, while using the harvested e
Magnetic induction (MI) based communication and power transfer systems have gained an increased attention in the recent years. Typical applications for these systems lie in the area of wireless charging, near-field communication, and wireless sensor
Radio frequency (RF) wireless energy transfer (WET) is a key technology that may allow seamlessly powering future massive low-energy Internet of Things (IoT) networks. To enable efficient massive WET, channel state information (CSI)-limited/free mult