ﻻ يوجد ملخص باللغة العربية
Achieving long battery lives or even self sustainability has been a long standing challenge for designing mobile devices. This paper presents a novel solution that seamlessly integrates two technologies, mobile cloud computing and microwave power transfer (MPT), to enable computation in passive low-complexity devices such as sensors and wearable computing devices. Specifically, considering a single-user system, a base station (BS) either transfers power to or offloads computation from a mobile to the cloud; the mobile uses harvested energy to compute given data either locally or by offloading. A framework for energy efficient computing is proposed that comprises a set of policies for controlling CPU cycles for the mode of local computing, time division between MPT and offloading for the other mode of offloading, and mode selection. Given the CPU-cycle statistics information and channel state information (CSI), the policies aim at maximizing the probability of successfully computing given data, called computing probability, under the energy harvesting and deadline constraints. The policy optimization is translated into the equivalent problems of minimizing the mobile energy consumption for local computing and maximizing the mobile energy savings for offloading which are solved using convex optimization theory. The structures of the resultant policies are characterized in closed form. Furthermore, given non-causal CSI, the said analytical framework is further developed to support computation load allocation over multiple channel realizations, which further increases computing probability. Last, simulation demonstrates the feasibility of wirelessly powered mobile cloud computing and the gain of its optimal control.
We consider a full-duplex decode-and-forward system, where the wirelessly powered relay employs the time-switching protocol to receive power from the source and then transmit information to the destination. It is assumed that the relay node is equipp
Mobile-edge computing (MEC) and wireless power transfer are technologies that can assist in the implementation of next generation wireless networks, which will deploy a large number of computational and energy limited devices. In this letter, we cons
Energy harvesting is a technology for enabling green, sustainable, and autonomous wireless networks. In this paper, a large-scale wireless network with energy harvesting transmitters is considered, where a group of transmitters forms a cluster to coo
This paper focuses on wireless energy transfer (WET) to a pair of low complex energy receivers (ER), by only utilizing received signal strength indicator (RSSI) values that are fed back from the ERs to the energy transmitter (ET). Selecting the beamf
Energy Efficiency (EE) is a big issue in 5th Generation Wireless Communications (5G) on condition that the number of access User Equipments (UEs) are exploding and more antennas should be equipped in one Base Station (BS). In EE studies, prior litera