ﻻ يوجد ملخص باللغة العربية
The White Dwarf Evolution Code (WDEC), written in Fortran, makes models of white dwarf stars. It is fast, versatile, and includes the latest physics. The code evolves hot (~ 100,000 K) input models down to a chosen effective temperature by relaxing the models to be solutions of the equations of stellar structure. The code can also be used to obtain g-mode oscillation modes for the models. WDEC has a long history going back to the late 1960s. Over the years, it has been updated and re-packaged for modern computer architectures, and has specifically been used in computationally intensive asteroseismic fitting. Generations of white dwarf astronomers and dozens of publications have made use of the WDEC, although the last true instrument paper is the original one, published in 1975. This paper discusses the history of the code, necessary to understand why it works the way it does, details the physics and features in the code today, and points the reader to where to find the code and a user guide.
The Type Ia supernova progenitor problem is one of the most perplexing and exciting problems in astrophysics, requiring detailed numerical modeling to complement observations of these explosions. One possible progenitor that has merited recent theore
The results of the Gaia mission will have tremendous influence on many topics in white dwarf research. In this paper the current status of the Gaia mission is described. At the end a short outlook on the release scenario and the expected accuracy of the Gaia data is provided.
We present a large parameter study where we investigate the structure of white dwarf (WD) merger remnants after the dynamical phase. A wide range of WD masses and compositions are explored and we also probe the effect of different initial conditions.
Non-radial pulsations have been identified in a number of accreting white dwarfs in cataclysmic variables. These stars offer insight into the excitation of pulsation modes in atmospheres with mixed compositions of hydrogen, helium, and metals, and th
We present optical high-speed photometry of three millisecond pulsars with low-mass ($< 0.3 M_{odot}$) white dwarf companions, bringing the total number of such systems with follow-up time-series photometry to five. We confirm the detection of pulsat