ترغب بنشر مسار تعليمي؟ اضغط هنا

White Dwarf Mergers on Adaptive Meshes I. Methodology and Code Verification

131   0   0.0 ( 0 )
 نشر من قبل Maximilian Katz
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Type Ia supernova progenitor problem is one of the most perplexing and exciting problems in astrophysics, requiring detailed numerical modeling to complement observations of these explosions. One possible progenitor that has merited recent theoretical attention is the white dwarf merger scenario, which has the potential to naturally explain many of the observed characteristics of Type Ia supernovae. To date there have been relatively few self-consistent simulations of merging white dwarf systems using mesh-based hydrodynamics. This is the first paper in a series describing simulations of these systems using a hydrodynamics code with adaptive mesh refinement. In this paper we describe our numerical methodology and discuss our implementation in the compressible hydrodynamics code CASTRO, which solves the Euler equations, and the Poisson equation for self-gravity, and couples the gravitational and rotation forces to the hydrodynamics. Standard techniques for coupling gravitation and rotation forces to the hydrodynamics do not adequately conserve the total energy of the system for our problem, but recent advances in the literature allow progress and we discuss our implementation here. We present a set of test problems demonstrating the extent to which our software sufficiently models a system where large amounts of mass are advected on the computational domain over long timescales. Future papers in this series will describe our treatment of the initial conditions of these systems and will examine the early phases of the merger to determine its viability for triggering a thermonuclear detonation.



قيم البحث

اقرأ أيضاً

The mergers of neutron stars (NSs) and white dwarfs (WDs) could give rise to explosive transients, potentially observable with current and future transient surveys. However, the expected properties and distribution of such events is not well understo od. Here we characterize the rates of such events, their delay time distribution, their progenitors and the distribution of their properties. We use binary populations synthesis models and consider a wide range of initial conditions and physical processes. In particular we consider different common-envelope evolution models and different NS natal kick distributions. We provide detailed predictions arising from each of the models considered. We find that the majority of NS-WD mergers are born in systems in which mass-transfer played an important role, and the WD formed before the NS. For the majority of the mergers the WDs have a carbon-oxygen composition (60-80%) and most of the rest are with oxygen-neon WDs. The rates of NS-WD mergers are in the range of 3-15% of the type Ia supernovae (SNe) rate. Their delay time distribution is very similar to that of type Ia SNe, but slightly biased towards earlier times. They typically explode in young 0.1-1Gyr environments, but have a tail distribution extending to long, Gyrs-timescales. Models including significant kicks give rise to relatively wide offset distribution extending to hundreds of kpcs. The demographic and physical properties of NS-WD mergers suggest they are likely to be peculiar type Ic-like SNe, mostly exploding in late type galaxies. Their overall properties could be related to a class of rapidly evolving SNe recently observed, while they are less likely to be related to the class of Ca-rich SNe.
We carry out a comprehensive smooth particle hydrodynamics simulation survey of double-degenerate white dwarf binary mergers of varying mass combinations in order to establish correspondence between initial conditions and remnant configurations. We f ind that all but one of our simulation remnants share general properties such as a cold, degenerate core surrounded by a hot disk, while our least massive pair of stars forms only a hot disk. We characterize our remnant configurations by the core mass, the rotational velocity of the core, and the half-mass radius of the disk. We also find that some of our simulations with very massive constituent stars exhibit helium detonations on the surface of the primary star before complete disruption of the secondary. However, these helium detonations are insufficiently energetic to ignite carbon, and so do not lead to prompt carbon detonations.
The White Dwarf Evolution Code (WDEC), written in Fortran, makes models of white dwarf stars. It is fast, versatile, and includes the latest physics. The code evolves hot (~ 100,000 K) input models down to a chosen effective temperature by relaxing t he models to be solutions of the equations of stellar structure. The code can also be used to obtain g-mode oscillation modes for the models. WDEC has a long history going back to the late 1960s. Over the years, it has been updated and re-packaged for modern computer architectures, and has specifically been used in computationally intensive asteroseismic fitting. Generations of white dwarf astronomers and dozens of publications have made use of the WDEC, although the last true instrument paper is the original one, published in 1975. This paper discusses the history of the code, necessary to understand why it works the way it does, details the physics and features in the code today, and points the reader to where to find the code and a user guide.
Recently, Thornton et al. reported the detection of four fast radio bursts (FRBs). The dispersion measures indicate that the sources of these FRBs are at cosmological distance. Given the large full sky event rate ~ 10^4 sky^-1 day^-1, the FRBs are a promising target for multi-messenger astronomy. Here we propose double degenerate, binary white-dwarf (WD) mergers as the source of FRBs, which are produced by coherent emission from the polar region of a rapidly rotating, magnetized massive WD formed after the merger. The basic characteristics of the FRBs, such as the energetics, emission duration and event rate, can be consistently explained in this scenario. As a result, we predict that some FRBs can accompany type Ia supernovae (SNe Ia) or X-ray debris disks. Simultaneous detection could test our scenario and probe the progenitors of SNe Ia, and moreover would provide a novel constraint on the cosmological parameters. We strongly encourage future SN and X-ray surveys that follow up FRBs.
119 - M. Dan , S. Rosswog (2 2013
We present a large parameter study where we investigate the structure of white dwarf (WD) merger remnants after the dynamical phase. A wide range of WD masses and compositions are explored and we also probe the effect of different initial conditions. We investigated the degree of mixing between the WDs, the conditions for detonations as well as the amount of gas ejected. We find that systems with lower mass ratios have more total angular momentum and as a result more mass is flung out in a tidal tail. Nuclear burning can affect the amount of mass ejected. Many WD binaries that contain a helium-rich WD achieve the conditions to trigger a detonation. In contrast, for carbon-oxygen transferring systems only the most massive mergers with a total mass above ~2.1 solar masses detonate. Even systems with lower mass may detonate long after the merger if the remnant remains above the Chandrasekhar mass and carbon is ignited at the centre. Finally, our findings are discussed in the context of several possible observed astrophysical events and stellar systems, such as hot subdwarfs, R Coronae Borealis stars, single massive white dwarfs, supernovae of type Ia and other transient events. A large database containing 225 white dwarf merger remnants is made available via a dedicated web page.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا