ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermally tunable hybrid photonic architecture for nonlinear optical circuits

83   0   0.0 ( 0 )
 نشر من قبل Marina Radulaski
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a thermally tunable hybrid photonic platform comprising gallium arsenide (GaAs) photonic crystal cavities, silicon nitride (SiN$_x$) grating couplers and waveguides, and chromium (Cr) microheaters on an integrated photonic chip. The GaAs photonic crystal cavities are evanescently connected to a common bus waveguide, separating the computation and communication layers. The microheaters are designed to continuously and reversibly tune distant photonic crystal cavities to a common resonance. This architecture can be implemented in a coherent optical network for dedicated optical computing and machine learning.



قيم البحث

اقرأ أيضاً

We integrate about 100 single Cadmium Selenide semiconductor nanowires in self-standing Silicon Nitride photonic crystal cavities in a single processing run. Room temperature measurements reveal a single narrow emission linewidth, corresponding to a Q-factor as large as 5000. By varying the structural parameters of the photonic crystal, the peak wavelength is tuned, thereby covering the entire emission spectral range of the active material. A very large spectral range could be covered by heterogeneous integration of different active materials.
A novel technique is presented for realising programmable silicon photonic circuits. Once the proposed photonic circuit is programmed, its routing is retained without the need for additional power consumption. This technology enables a uniform multi- purpose design of photonic chips for a range of different applications and performance requirements, as it can be programmed for each specific application after chip fabrication. Therefore the cost per chip can be dramatically reduced because of the increase in production volume, and rapid prototyping of new photonic circuits is enabled. Essential building blocks for programmable circuits, erasable directional couplers (DCs) were designed and fabricated, utilising ion implanted waveguides. We demonstrate permanent switching between the drop port and through port of the DCs using a localised post-fabrication laser annealing process. Proof-of-principle demonstrators in the form of generic 1X4 and 2X2 programmable switching circuits were then fabricated and subsequently programmed, to define their function.
Efficient numeric algorithm is the key for accurate evaluation of density of states (DOS) in band theory. Gilat-Raubenheimer (GR) method proposed in 1966 is an efficient linear extrapolation method which was limited in specific lattices. Here, using an affine transformation, we provide a new generalization of the original GR method to any Bravais lattices and show that it is superior to the tetrahedron method and the adaptive Gaussian broadening method. Finally, we apply our generalized GR (GGR) method to compute DOS of various gyroid photonic crystals of topological degeneracies.
Photonic crystal-based biosensors hold great promise as valid and low-cost devices for real-time monitoring of a variety of biotargets. Given the high processability and easiness of read-out even for unskilled operators, these systems can be highly a ppealing for the detection of bacterial contaminants in food and water. Here, we propose a novel hybrid plasmonic/photonic device that is responsive to Escherichia coli, which is one of the most hazardous pathogenic bacterium. Our system consists of a thin layer of silver, a metal that exhibits both a plasmonic behavior and a well-known biocidal activity, on top of a solution processed 1D photonic crystal. We attribute the bio-responsivity to the modification of the dielectric properties of the silver film upon bacterial contamination, an effect that likely stems from the formation of polarization charges at the Ag/bacterium interface within a sort of bio-doping mechanism. Interestingly, this triggers a blue-shift in the photonic response. This work demonstrates that our hybrid plasmonic/photonic device can be a low-cost and portable platform for the detection of common contaminants in food and water.
Development of scalable quantum photonic technologies requires on-chip integration of components such as photonic crystal cavities and waveguides with nonclassical light sources. Recently, hexagonal boron nitride (hBN) has emerged as a promising plat form for nanophotonics, following reports of hyperbolic phonon-polaritons and optically stable, ultra-bright quantum emitters. However, exploitation of hBN in scalable, on-chip nanophotonic circuits, quantum information processing and cavity quantum electrodynamics (QED) experiments requires robust techniques for the fabrication of monolithic optical resonators. In this letter, we design and engineer high quality photonic crystal cavities from hBN. We employ two approaches based on a focused ion beam method and a minimally-invasive electron beam induced etching (EBIE) technique to fabricate suspended two dimensional (2D) and one dimensional (1D) cavities with quality (Q) factors in excess of 2,000. Subsequently, we show deterministic, iterative tuning of individual cavities by direct-write, single-step EBIE without significant degradation of the Q-factor. The demonstration of tunable, high Q cavities made from hBN is an unprecedented advance in nanophotonics based on van der Waals materials. Our results and hBN processing methods open up promising new avenues for solid-state systems with applications in integrated quantum photonics, polaritonics and cavity QED experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا