ﻻ يوجد ملخص باللغة العربية
The methodology developed in this article is motivated by a wide range of prediction and uncertainty quantification problems that arise in Statistics, Machine Learning and Applied Mathematics, such as non-parametric regression, multi-class classification and inversion of partial differential equations. One popular formulation of such problems is as Bayesian inverse problems, where a prior distribution is used to regularize inference on a high-dimensional latent state, typically a function or a field. It is common that such priors are non-Gaussian, for example piecewise-constant or heavy-tailed, and/or hierarchical, in the sense of involving a further set of low-dimensional parameters, which, for example, control the scale or smoothness of the latent state. In this formulation prediction and uncertainty quantification relies on efficient exploration of the posterior distribution of latent states and parameters. This article introduces a framework for efficient MCMC sampling in Bayesian inverse problems that capitalizes upon two fundamental ideas in MCMC, non-centred parameterisations of hierarchical models and dimension-robust samplers for latent Gaussian processes. Using a range of diverse applications we showcase that the proposed framework is dimension-robust, that is, the efficiency of the MCMC sampling does not deteriorate as the dimension of the latent state gets higher. We showcase the full potential of the machinery we develop in the article in semi-supervised multi-class classification, where our sampling algorithm is used within an active learning framework to guide the selection of input data to manually label in order to achieve high predictive accuracy with a minimal number of labelled data.
We present the Sequential Ensemble Transform (SET) method, an approach for generating approximate samples from a Bayesian posterior distribution. The method explores the posterior distribution by solving a sequence of discrete optimal transport probl
We present a non-trivial integration of dimension-independent likelihood-informed (DILI) MCMC (Cui, Law, Marzouk, 2016) and the multilevel MCMC (Dodwell et al., 2015) to explore the hierarchy of posterior distributions. This integration offers severa
Bayesian learning in undirected graphical models|computing posterior distributions over parameters and predictive quantities is exceptionally difficult. We conjecture that for general undirected models, there are no tractable MCMC (Markov Chain Monte
This paper introduces a framework for speeding up Bayesian inference conducted in presence of large datasets. We design a Markov chain whose transition kernel uses an (unknown) fraction of (fixed size) of the available data that is randomly refreshed
Bayesian methods are actively used for parameter identification and uncertainty quantification when solving nonlinear inverse problems with random noise. However, there are only few theoretical results justifying the Bayesian approach. Recent papers,