ﻻ يوجد ملخص باللغة العربية
The Intermediate Mass Fragments emission probability from Projectile-Like Fragment break-up in semi-peripheral reactions has been measured in collisions of $^{124}$Xe projectiles with two different targets of $^{64}$Ni and $^{64}$Zn at the laboratory energy of 35 amev. The two colliding systems differ only for the target atomic number Z and, consequently, for the Isospin $N/Z$ ratio. An enhancement of Intermediate Mass Fragments production for the neutron rich $^{64}$Ni target, with respect to the $^{64}$Zn, is found. In the case of one Intermediate Mass Fragment emission, the contributions of the dynamical and statistical emissions have been evaluated, showing that the increase of the effect above is due to an enhancement of the dynamical emission probability, especially for heavy IMFs (Z$gtrsim$ 7). This proves an influence of the target Isospin on inducing the dynamical fragment production from Projectile-Like Fragment break-up. In addition, a comparison of the Xe+Ni,Zn results with the previously studied $^{112,124}Sn+^{58,64}Ni$ systems is discussed in order to investigate the influence of the projectile Isospin alone and to disentangle between Isospin effects against system-size effects on the emission probability. These comparisons suggest that the prompt-dynamical emission is mainly ruled by the $N/Z$ content of, both, projectile and target; for the cases here investigated, the influence of the system size on the dynamical emission probability can be excluded.
The fragmentation of the quasi-projectile is studied with the INDRA multidetector for different colliding systems and incident energies in the Fermi energy range. Different experimental observations show that a large part of the fragmentation is not
Isotopically resolved fragments with Z<=20 have been studied with high resolution telescopes in a test run for the FAZIA collaboration. The fragments were produced by the collision of a 84Kr beam at 35 MeV/nucleon with a n-rich (124Sn) and a n-poor (
Isospin diffusion is probed as a function of the dissipated energy by studying two systems $^{58}$Ni+$^{58}$Ni and $^{58}$Ni+$^{197}$Au, over the incident energy range 52-74AM. Experimental data are compared with the results of a microscopic transpor
We study isospin effects in semi-peripheral collisions above the Fermi energy by considering the symmetric $^{58}Ni$ + $^{58}Ni$ and the asymmetric reactions $^{58}Ni$ + $^{197}Au$ over the incident energy range 52-74 A MeV. A microscopic transport m
The $^{58}Ni+^{58}Ni$ reaction at 30 MeV/nucleon has been experimentally investigated at the Superconducting Cyclotron of the INFN Laboratori Nazionali del Sud. In midperipheral collisions the production of massive fragments (4$le$Z$le$12), consisten