ﻻ يوجد ملخص باللغة العربية
Isotopically resolved fragments with Z<=20 have been studied with high resolution telescopes in a test run for the FAZIA collaboration. The fragments were produced by the collision of a 84Kr beam at 35 MeV/nucleon with a n-rich (124Sn) and a n-poor (112Sn) target. The fragments, detected close to the grazing angle, are mainly emitted from the phase-space region of the projectile. The fragment isotopic content clearly depends on the n-richness of the target and it is a direct evidence of isospin diffusion between projectile and target. The observed enhanced neutron richness of light fragments emitted from the phase-space region close to the center of mass of the system can be interpreted as an effect of isospin drift in the diluted neck region.
Isospin e ffects on multifragmentation properties were studied thanks to nuclear collisions between di fferent isotopes of xenon beams and tin targets. It is shown that, in central collisions leading to multifragmentation, the mean number of fragment
Within the framework of the Lanzhou quantum molecular dynamics (LQMD) transport model, the isospin effect in peripheral heavy-ion collisions has been investigated thoroughly. A coalescence approach is used for recognizing the primary fragments formed
Isotopic yields for light particles and intermediate mass fragments have been measured for 112Sn+112Sn, 112Sn+124Sn, 124Sn+112Sn and 124Sn+124Sn central collisions at E/A=50 MeV and compared with predictions of stochastic mean field calculations. The
The Intermediate Mass Fragments emission probability from Projectile-Like Fragment break-up in semi-peripheral reactions has been measured in collisions of $^{124}$Xe projectiles with two different targets of $^{64}$Ni and $^{64}$Zn at the laboratory
Peripheral and semi-peripheral collisions have been studied in the system 93Nb+93Nb at 38 AMeV. The evaporative and midvelocity components of the light charged particle and intermediate mass fragment emissions have been carefully disentangled. In thi