ﻻ يوجد ملخص باللغة العربية
In this work, we study the existence of low amplitude four-site phase-shift multibreathers for small values of the coupling $epsilon$ in Klein-Gordon (KG) chains with interactions longer than the classical nearest-neighbour ones. In the proper parameter regimes, the considered lattices bear connections to models beyond one spatial dimension, namely the so-called zigzag lattice, as well as the two-dimensional square lattice. We examine initially the persistence conditions of the system, in order to seek for vortex-like waveforms. Although this approach provides useful insights, due to the degeneracy of these solutions, it does not allow us to determine if they constitute true solutions of our system. In order to overcome this obstacle, we follow a different route. In the case of the zigzag configuration, by means of a Lyapunov-Schmidt decomposition, we are able to establish that the bifurcation equation for our model can be considered, in the small energy and small coupling regime, as a perturbation of a corresponding non-local discrete nonlinear Schrodinger (NL-dNLS) equation. There, nonexistence results of degenerate phase-shift discrete solitons can be demonstrated by exploiting the expansion of a suitable density current of the NL-dNLS, obtained in recent literature. Finally, briefly considering a one-dimensional model bearing similarities to the square lattice, we conclude that the above strategy is not efficient for the proof of the existence or nonexistence of vortices due to the higher degeneracy of this configuration.
We study the existence and stability of multibreathers in Klein-Gordon chains with interactions that are not restricted to nearest neighbors. We provide a general framework where such long range effects can be taken into consideration for arbitrarily
We consider the energy landscape of a dissipative Klein-Gordon lattice with a $phi^4$ on-site potential. Our analysis is based on suitable energy arguments, combined with a discrete version of the L{}ojasiewicz inequality, in order to justify the con
The generalized perturbative reduction method is used to find the two-component vector breather solution of the nonlinear Klein-Gordon equation. It is shown that the nonlinear pulse oscillates with the sum and difference of frequencies and wave numbe
Klein-Gordon equations describe the dynamics of waves/particles in sub-atomic scales. For nonlinear Klein-Gordon equations, their breather solutions are usually known as time periodic solutions with the vanishing spatial-boundary condition. The exist
We consider effectively one-dimensional planar and radial kinks in two-dimensional nonlinear Klein-Gordon models and focus on the sine-Gordon model and the $phi^4$ variants thereof. We adapt an adiabatic invariant formulation recently developed for n