ﻻ يوجد ملخص باللغة العربية
A new sine observable, $R_{Psi_2}(Delta S)$, has been proposed to measure the chiral magnetic effect (CME) in heavy-ion collisions; $Delta S = left langle sin varphi_+ right rangle - left langle sin varphi_- right rangle$, where $varphi_pm$ are azimuthal angles of positively and negatively charged particles relative to the reaction plane and averages are event-wise, and $R_{Psi_2}(Delta S)$ is a normalized event probability distribution. Preliminary STAR data reveal concave $R_{Psi_2}(Delta S)$ distributions in 200 GeV Au+Au collisions. Studies with a multiphase transport (AMPT) and anomalous-viscous Fluid Dynamics (AVFD) models show concave $R_{Psi_2}(Delta S)$ distributions for CME signals and convex ones for typical resonance backgrounds. A recent hydrodynamic study, however, indicates concave shapes for backgrounds as well. To better understand these results, we report a systematic study of the elliptic flow ($v_{2}$) and transverse momentum ($p_{T}$) dependences of resonance backgrounds with toy-model simulations and central limit theorem (CLT) calculations. It is found that the concavity or convexity of $R_{Psi_2}(Delta S)$ depends sensitively on the resonance $v_2$ (which yields different numbers of decay $pi^+pi^-$ pairs in the in-plane and out-of-plane directions) and $p_T$ (which affects the opening angle of the decay $pi^+pi^-$ pair). Qualitatively, low $p_{T}$ resonances decay into large opening-angle pairs and result in more `back-to-back pairs out-of-plane, mimicking a CME signal, or a concave $R_{Psi_2}(Delta S)$. Supplemental studies of $R_{Psi_3}(Delta S)$ in terms of the triangular flow ($v_3$), where only backgrounds exist but any CME would average to zero, are also presented.
The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. It is of fundamental importance to search for the CME in experiments. The heavy ion c
Background: The chiral magnetic effect (CME) is extensively studied in heavy-ion collisions at RHIC and the LHC. An azimuthal correlator called $R_{Psi_{m}}$ was proposed to measure the CME. By observing the same $R_{Psi_{2}}$ and $R_{Psi_{3}}$ (conv
$textbf{Background:}$ The chiral magnetic effect (CME) is extensively studied in heavy-ion collisions at RHIC and LHC. In the commonly used reaction plane (RP) dependent, charge dependent azimuthal correlator ($Deltagamma$), both the close and back-t
We give a numerical simulation of the generation of the magnetic field and the charge-separation signal due to the chiral magnetic effect (CME) --- the induction of an electric current by the magnetic field in a parity-odd matter --- in the collision
The validity of impact parameter estimation from the multiplicity of charged particles at low-intermediate energies is checked within the framework of ImQMD model. The simulations show that the multiplicity of charged particles cannot estimate the im