ترغب بنشر مسار تعليمي؟ اضغط هنا

Algorithmic bias amplifies opinion polarization: A bounded confidence model

165   0   0.0 ( 0 )
 نشر من قبل Alina S\\^irbu
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

The flow of information reaching us via the online media platforms is optimized not by the information content or relevance but by popularity and proximity to the target. This is typically performed in order to maximise platform usage. As a side effect, this introduces an algorithmic bias that is believed to enhance polarization of the societal debate. To study this phenomenon, we modify the well-known continuous opinion dynamics model of bounded confidence in order to account for the algorithmic bias and investigate its consequences. In the simplest version of the original model the pairs of discussion participants are chosen at random and their opinions get closer to each other if they are within a fixed tolerance level. We modify the selection rule of the discussion partners: there is an enhanced probability to choose individuals whose opinions are already close to each other, thus mimicking the behavior of online media which suggest interaction with similar peers. As a result we observe: a) an increased tendency towards polarization, which emerges also in conditions where the original model would predict convergence, and b) a dramatic slowing down of the speed at which the convergence at the asymptotic state is reached, which makes the system highly unstable. Polarization is augmented by a fragmented initial population.



قيم البحث

اقرأ أيضاً

Peoples opinions evolve over time as they interact with their friends, family, colleagues, and others. In the study of opinion dynamics on networks, one often encodes interactions between people in the form of dyadic relationships, but many social in teractions in real life are polyadic (i.e., they involve three or more people). In this paper, we extend an asynchronous bounded-confidence model (BCM) on graphs, in which nodes are connected pairwise by edges, to an asynchronous BCM on hypergraphs, in which arbitrarily many nodes can be connected by a single hyperedge. We show that our hypergraph BCM converges to consensus under a wide range of initial conditions for the opinions of the nodes, including for non-uniform and asymmetric initial opinion distributions. We also show that, under suitable conditions, echo chambers can form on hypergraphs with community structure. We demonstrate that the opinions of individuals can sometimes jump from one opinion cluster to another in a single time step, a phenomenon (which we call ``opinion jumping) that is not possible in standard dyadic BCMs. Additionally, we observe that there is a phase transition in the convergence time on {a complete hypergraph} when the variance $sigma^2$ of the initial opinion distribution equals the confidence bound $c$. We prove that the convergence time grows at least exponentially fast with the number of nodes when $sigma^2 > c$ and the initial opinions are normally distributed. Therefore, to determine the convergence properties of our hypergraph BCM when the variance and the number of hyperedges are both large, it is necessary to use analytical methods instead of relying only on Monte Carlo simulations.
The problem of analyzing the performance of networked agents exchanging evidence in a dynamic network has recently grown in importance. This problem has relevance in signal and data fusion network applications and in studying opinion and consensus dy namics in social networks. Due to its capability of handling a wider variety of uncertainties and ambiguities associated with evidence, we use the framework of Dempster-Shafer (DS) theory to capture the opinion of an agent. We then examine the consensus among agents in dynamic networks in which an agent can utilize either a cautious or receptive updating strategy. In particular, we examine the case of bounded confidence updating where an agent exchanges its opinion only with neighboring nodes possessing similar evidence. In a fusion network, this captures the case in which nodes only update their state based on evidence consistent with the nodes own evidence. In opinion dynamics, this captures the notions of Social Judgment Theory (SJT) in which agents update their opinions only with other agents possessing opinions closer to their own. Focusing on the two special DS theoretic cases where an agent state is modeled as a Dirichlet body of evidence and a probability mass function (p.m.f.), we utilize results from matrix theory, graph theory, and networks to prove the existence of consensus agent states in several time-varying network cases of interest. For example, we show the existence of a consensus in which a subset of network nodes achieves a consensus that is adopted by follower network nodes. Of particular interest is the case of multiple opinion leaders, where we show that the agents do not reach a consensus in general, but rather converge to opinion clusters. Simulation results are provided to illustrate the main results.
It is known that individual opinions on different policy issues often align to a dominant ideological dimension (e.g. left vs. right) and become increasingly polarized. We provide an agent-based model that reproduces these two stylized facts as emerg ent properties of an opinion dynamics in a multi-dimensional space of continuous opinions. The mechanisms for the change of agents opinions in this multi-dimensional space are derived from cognitive dissonance theory and structural balance theory. We test assumptions from proximity voting and from directional voting regarding their ability to reproduce the expected emerging properties. We further study how the emotional involvement of agents, i.e. their individual resistance to change opinions, impacts the dynamics. We identify two regimes for the global and the individual alignment of opinions. If the affective involvement is high and shows a large variance across agents, this fosters the emergence of a dominant ideological dimension. Agents align their opinions along this dimension in opposite directions, i.e. create a state of polarization.
We explore a new mechanism to explain polarization phenomena in opinion dynamics in which agents evaluate alternative views on the basis of the social feedback obtained on expressing them. High support of the favored opinion in the social environment , is treated as a positive feedback which reinforces the value associated to this opinion. In connected networks of sufficiently high modularity, different groups of agents can form strong convictions of competing opinions. Linking the social feedback process to standard equilibrium concepts we analytically characterize sufficient conditions for the stability of bi-polarization. While previous models have emphasized the polarization effects of deliberative argument-based communication, our model highlights an affective experience-based route to polarization, without assumptions about negative influence or bounded confidence.
The communication process in a situation of emergency is discussed within the Scheff theory of shame and pride. The communication involves messages from media and from other persons. Three strategies are considered: selfish (to contact friends), coll ective (to join other people) and passive (to do nothing). We show that the pure selfish strategy cannot be evolutionarily stable. The main result is that the community structure is statistically meaningful only if the interpersonal communication is weak.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا